A Posteriori Error Estimates for the Virtual Element Method for the Stokes Problem

被引:0
|
作者
Gang Wang
Ying Wang
Yinnian He
机构
[1] Northwestern Polytechnical University,School of Mathematics and Statistics
[2] Xi’an University of Architecture and Technology,School of Science
[3] Xi’an Jiaotong University,School of Mathematics and Statistics
来源
关键词
Stokes problem; Virtual element method; A posteriori error estimate; Polygonal meshes;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents a residual-type a posteriori error estimator for the virtual element method for the Stokes problem. It is proved that the a posteriori error estimator is reliable and efficient. The virtual element method allows the use of very general polygonal meshes and handles the hanging nodes naturally. Consequently, the local post-processing of locally adapted mesh can be avoided, which simplifies the adaptive procedure. A series of numerical examples are reported to show the effectiveness of adaptive mesh refinement driven by this estimator.
引用
收藏
相关论文
共 50 条
  • [21] A posteriori error estimates in the finite element method of lines
    Segeth, K
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1997, 77 : S671 - S672
  • [22] A residual a posteriori error estimate for the Virtual Element Method
    Berrone, Stefano
    Borio, Andrea
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2017, 27 (08): : 1423 - 1458
  • [23] Anisotropic a posteriori error estimate for the virtual element method
    Antonietti, P. F.
    Berrone, S.
    Borio, A.
    D'Auria, A.
    Verani, M.
    Weisser, S.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2022, 42 (02) : 1273 - 1312
  • [24] A Posteriori Estimates for the Stokes Eigenvalue Problem
    Lovadina, Carlo
    Lyly, Mikko
    Stenberg, Rolf
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2009, 25 (01) : 244 - 257
  • [25] Local a posteriori estimates for the Stokes problem
    Repin S.I.
    Journal of Mathematical Sciences, 2006, 136 (2) : 3786 - 3793
  • [26] A posteriori error estimates of finite element method for the time-dependent Navier-Stokes equations
    Zhang, Tong
    Li, ShiShun
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 315 : 13 - 26
  • [27] A posteriori error estimates of stabilized finite volume method for the Stokes equations
    Zhang, Tong
    Mu, Lin
    Yuan, JinYun
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (01) : 32 - 43
  • [28] A posteriori error estimates for a compressible stokes system
    Kweon, JR
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2004, 20 (03) : 412 - 431
  • [29] Error Analysis of Nonconforming Virtual Element Method for Stokes Problem with Low Regularity
    Wang, Tongli
    Zhao, Jikun
    TAIWANESE JOURNAL OF MATHEMATICS, 2023, 27 (04): : 719 - 735
  • [30] A posteriori error estimates for fully discrete schemes for the time dependent Stokes problem
    E. Bänsch
    F. Karakatsani
    C. G. Makridakis
    Calcolo, 2018, 55