Anisotropic a posteriori error estimate for the virtual element method

被引:10
|
作者
Antonietti, P. F. [1 ]
Berrone, S. [2 ]
Borio, A. [2 ]
D'Auria, A. [2 ]
Verani, M. [1 ]
Weisser, S. [3 ]
机构
[1] Politecn Milan, Dipartimento Matemat, MOX, I-20133 Milan, Italy
[2] Politecn Torino, Dipartimento Sci Matemat, I-10129 Turin, Italy
[3] Univ Saarland, FR Math, Postfach 15 11 50, D-66041 Saarbrucken, Germany
关键词
virtual element method; anisotropy; a posteriori error analysis; SUPERCONVERGENT PATCH RECOVERY; GRADIENT RECOVERY; MESHES; DISCRETIZATION;
D O I
10.1093/imanum/drab001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive an anisotropic a posteriori error estimate for the adaptive conforming virtual element approximation of a paradigmatic two-dimensional elliptic problem. In particular, we introduce a quasi-interpolant operator and exploit its approximation results to prove the reliability of the error indicator. We design and implement the corresponding adaptive polygonal anisotropic algorithm. Several numerical tests assess the superiority of the proposed algorithm in comparison with standard polygonal isotropic mesh refinement schemes.
引用
收藏
页码:1273 / 1312
页数:40
相关论文
共 50 条
  • [1] A residual a posteriori error estimate for the Virtual Element Method
    Berrone, Stefano
    Borio, Andrea
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2017, 27 (08): : 1423 - 1458
  • [2] A posteriori error estimates for the virtual element method
    Andrea Cangiani
    Emmanuil H. Georgoulis
    Tristan Pryer
    Oliver J. Sutton
    [J]. Numerische Mathematik, 2017, 137 : 857 - 893
  • [3] A posteriori error estimates for the virtual element method
    Cangiani, Andrea
    Georgoulis, Emmanuil H.
    Pryer, Tristan
    Sutton, Oliver J.
    [J]. NUMERISCHE MATHEMATIK, 2017, 137 (04) : 857 - 893
  • [4] A posteriori error estimate for the mixed finite element method
    Carstensen, C
    [J]. MATHEMATICS OF COMPUTATION, 1997, 66 (218) : 465 - 476
  • [5] A Posteriori Error Estimates for the Virtual Element Method for the Stokes Problem
    Wang, Gang
    Wang, Ying
    He, Yinnian
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2020, 84 (02)
  • [6] A Posteriori Error Estimates for the Virtual Element Method for the Stokes Problem
    Gang Wang
    Ying Wang
    Yinnian He
    [J]. Journal of Scientific Computing, 2020, 84
  • [7] A posteriori error estimate for finite volume element method of the parabolic equations
    Chen, Chuanjun
    Zhao, Xin
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2017, 33 (01) : 259 - 275
  • [8] A residual a posteriori error estimate for the time–domain boundary element method
    Heiko Gimperlein
    Ceyhun Özdemir
    David Stark
    Ernst P. Stephan
    [J]. Numerische Mathematik, 2020, 146 : 239 - 280
  • [9] A new a posteriori error estimate for the Morley element
    Jun Hu
    Zhongci Shi
    [J]. Numerische Mathematik, 2009, 112 : 25 - 40
  • [10] A new a posteriori error estimate for the Morley element
    Hu, Jun
    Shi, Zhongci
    [J]. NUMERISCHE MATHEMATIK, 2009, 112 (01) : 25 - 40