A residual a posteriori error estimate for the Virtual Element Method

被引:33
|
作者
Berrone, Stefano [1 ]
Borio, Andrea [1 ]
机构
[1] Politecn Torino, Dipartimento Sci Matemat, Corso Duca Abruzzi 24, I-10129 Turin, Italy
来源
关键词
A posteriori" error estimates; Virtual Element Method; mesh adaptivity; Single-phase flows; underground flow simulations; CONSTRAINED OPTIMIZATION FORMULATION; FRACTURE NETWORK SIMULATIONS; ADVECTION-DIFFUSION PROBLEMS; ELLIPTIC PROBLEMS; DISCONTINUOUS COEFFICIENTS; HEAT-EQUATION; PARABOLIC EQUATIONS; POLYGONAL ELEMENTS; FLOW SIMULATIONS; DISCRETIZATIONS;
D O I
10.1142/S0218202517500233
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A residual-based a posteriori error estimate for the Poisson problem with discontinuous diffusivity coefficient is derived in the case of a virtual element discretization. The error is measured considering a suitable polynomial projection of the discrete solution to prove an equivalence between the defined error and a computable residual based error estimator that does not involve any term related to the virtual element stabilization. Numerical results display a very good behavior of the ratio between the error and the error estimator, resulting independent of the meshsize and element distortion.
引用
收藏
页码:1423 / 1458
页数:36
相关论文
共 50 条
  • [1] Anisotropic a posteriori error estimate for the virtual element method
    Antonietti, P. F.
    Berrone, S.
    Borio, A.
    D'Auria, A.
    Verani, M.
    Weisser, S.
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2022, 42 (02) : 1273 - 1312
  • [2] A residual a posteriori error estimate for the time–domain boundary element method
    Heiko Gimperlein
    Ceyhun Özdemir
    David Stark
    Ernst P. Stephan
    [J]. Numerische Mathematik, 2020, 146 : 239 - 280
  • [3] RESIDUAL A POSTERIORI ERROR ESTIMATION FOR THE VIRTUAL ELEMENT METHOD FOR ELLIPTIC PROBLEMS
    da Veiga, L. Beirao
    Manzini, G.
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2015, 49 (02): : 577 - 599
  • [4] A residual a posteriori error estimate for the time-domain boundary element method
    Gimperlein, Heiko
    Oezdemir, Ceyhun
    Stark, David
    Stephan, Ernst P.
    [J]. NUMERISCHE MATHEMATIK, 2020, 146 (02) : 239 - 280
  • [5] A posteriori error estimates for the virtual element method
    Andrea Cangiani
    Emmanuil H. Georgoulis
    Tristan Pryer
    Oliver J. Sutton
    [J]. Numerische Mathematik, 2017, 137 : 857 - 893
  • [6] A posteriori error estimates for the virtual element method
    Cangiani, Andrea
    Georgoulis, Emmanuil H.
    Pryer, Tristan
    Sutton, Oliver J.
    [J]. NUMERISCHE MATHEMATIK, 2017, 137 (04) : 857 - 893
  • [7] A posteriori error estimate for the mixed finite element method
    Carstensen, C
    [J]. MATHEMATICS OF COMPUTATION, 1997, 66 (218) : 465 - 476
  • [8] Residual a posteriori error estimates for the mixed finite element method
    Kirby, R
    [J]. COMPUTATIONAL GEOSCIENCES, 2003, 7 (03) : 197 - 214
  • [9] Residual a Posteriori Error Estimates for the Mixed Finite Element Method
    Robert Kirby
    [J]. Computational Geosciences, 2003, 7 : 197 - 214
  • [10] A Posteriori Error Estimates for the Virtual Element Method for the Stokes Problem
    Wang, Gang
    Wang, Ying
    He, Yinnian
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2020, 84 (02)