A posteriori error estimates for the virtual element method

被引:158
|
作者
Cangiani, Andrea [1 ]
Georgoulis, Emmanuil H. [1 ,2 ]
Pryer, Tristan [3 ]
Sutton, Oliver J. [1 ]
机构
[1] Univ Leicester, Dept Math, Univ Rd, Leicester LE1 7RH, Leics, England
[2] Natl Tech Univ Athens, Sch Math & Phys Sci, Dept Math, Zografos 15780, Greece
[3] Univ Reading, Dept Math & Stat, Reading RG6 6AX, Berks, England
基金
英国工程与自然科学研究理事会;
关键词
DISCONTINUOUS GALERKIN METHODS; ELLIPTIC PROBLEMS;
D O I
10.1007/s00211-017-0891-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An posteriori error analysis for the virtual element method (VEM) applied to general elliptic problems is presented. The resulting error estimator is of residual-type and applies on very general polygonal/polyhedral meshes. The estimator is fully computable as it relies only on quantities available from the VEM solution, namely its degrees of freedom and element-wise polynomial projection. Upper and lower bounds of the error estimator with respect to the VEM approximation error are proven. The error estimator is used to drive adaptive mesh refinement in a number of test problems. Mesh adaptation is particularly simple to implement since elements with consecutive co-planar edges/faces are allowed and, therefore, locally adapted meshes do not require any local mesh post-processing.
引用
收藏
页码:857 / 893
页数:37
相关论文
共 50 条
  • [1] A posteriori error estimates for the virtual element method
    Andrea Cangiani
    Emmanuil H. Georgoulis
    Tristan Pryer
    Oliver J. Sutton
    [J]. Numerische Mathematik, 2017, 137 : 857 - 893
  • [2] A Posteriori Error Estimates for the Virtual Element Method for the Stokes Problem
    Wang, Gang
    Wang, Ying
    He, Yinnian
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2020, 84 (02)
  • [3] A Posteriori Error Estimates for the Virtual Element Method for the Stokes Problem
    Gang Wang
    Ying Wang
    Yinnian He
    [J]. Journal of Scientific Computing, 2020, 84
  • [4] A Posteriori Error Estimates of Virtual Element Method for a Simplified Friction Problem
    Yanling Deng
    Fei Wang
    Huayi Wei
    [J]. Journal of Scientific Computing, 2020, 83
  • [5] A Posteriori Error Estimates of Virtual Element Method for a Simplified Friction Problem
    Deng, Yanling
    Wang, Fei
    Wei, Huayi
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2020, 83 (03)
  • [6] A posteriori error estimates for a Virtual Element Method for the Steklov eigenvalue problem
    Mora, David
    Rivera, Gonzalo
    Rodriguez, Rodolfo
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (09) : 2172 - 2190
  • [7] A posteriori error estimates in the finite element method of lines
    Segeth, K
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1997, 77 : S671 - S672
  • [8] A residual a posteriori error estimate for the Virtual Element Method
    Berrone, Stefano
    Borio, Andrea
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2017, 27 (08): : 1423 - 1458
  • [9] Anisotropic a posteriori error estimate for the virtual element method
    Antonietti, P. F.
    Berrone, S.
    Borio, A.
    D'Auria, A.
    Verani, M.
    Weisser, S.
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2022, 42 (02) : 1273 - 1312
  • [10] A-POSTERIORI ERROR ESTIMATES FOR FINITE-ELEMENT METHOD
    BABUSKA, I
    RHEINBOLDT, WC
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1978, 12 (10) : 1597 - 1615