A Posteriori Error Estimates of Virtual Element Method for a Simplified Friction Problem

被引:7
|
作者
Deng, Yanling [1 ]
Wang, Fei [1 ]
Wei, Huayi [2 ]
机构
[1] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
[2] Xiangtan Univ, Sch Math & Computat Sci, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Elliptic variational inequality; A posteriori error analysis; Virtual element method; Adaptive mesh refinement; Polygonal meshes; DISCONTINUOUS GALERKIN METHODS; ELLIPTIC VARIATIONAL-INEQUALITIES; FORMULATION; EFFICIENT;
D O I
10.1007/s10915-020-01242-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a posteriori error analysis of the virtual element method (VEM) for a simplified friction problem, which is a representative elliptic variational inequality of the second kind. By treating hanging nodes as vertices of polygonal elements, the virtual element method does not require any local mesh post-processing after the adaptive mesh refinement. In this work, residual type error estimators are derived for designing adaptive VEM to solve the simplified friction problem. Furthermore, the reliability and efficiency of the error estimators are proved. Finally, a numerical example is given to verify the theoretical results.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] A Posteriori Error Estimates of Virtual Element Method for a Simplified Friction Problem
    Yanling Deng
    Fei Wang
    Huayi Wei
    [J]. Journal of Scientific Computing, 2020, 83
  • [2] A Posteriori Error Estimates for the Virtual Element Method for the Stokes Problem
    Wang, Gang
    Wang, Ying
    He, Yinnian
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2020, 84 (02)
  • [3] A Posteriori Error Estimates for the Virtual Element Method for the Stokes Problem
    Gang Wang
    Ying Wang
    Yinnian He
    [J]. Journal of Scientific Computing, 2020, 84
  • [4] A posteriori error estimates for the virtual element method
    Andrea Cangiani
    Emmanuil H. Georgoulis
    Tristan Pryer
    Oliver J. Sutton
    [J]. Numerische Mathematik, 2017, 137 : 857 - 893
  • [5] A posteriori error estimates for the virtual element method
    Cangiani, Andrea
    Georgoulis, Emmanuil H.
    Pryer, Tristan
    Sutton, Oliver J.
    [J]. NUMERISCHE MATHEMATIK, 2017, 137 (04) : 857 - 893
  • [6] A posteriori error estimates for a Virtual Element Method for the Steklov eigenvalue problem
    Mora, David
    Rivera, Gonzalo
    Rodriguez, Rodolfo
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (09) : 2172 - 2190
  • [7] Virtual element method for simplified friction problem
    Wang, Fei
    Wei, Huayi
    [J]. APPLIED MATHEMATICS LETTERS, 2018, 85 : 125 - 131
  • [8] A priori and a posteriori error estimates for a virtual element method for the non-self-adjoint Steklov eigenvalue problem
    Wang, Gang
    Meng, Jian
    Wang, Ying
    Mei, Liquan
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2022, 42 (04) : 3675 - 3710
  • [9] Error estimates for a contact problem with the Tresca friction or the simplified Coulomb friction in elastic materials by the element-free Galerkin method
    Shen, Quan
    Ding, Rui
    Wang, Yu
    [J]. APPLIED MATHEMATICAL MODELLING, 2020, 77 : 690 - 708
  • [10] Error estimates for a contact problem with the Tresca friction or the simplified Coulomb friction in elastic materials by the element-free Galerkin method
    Shen, Quan
    Ding, Rui
    Wang, Yu
    [J]. Applied Mathematical Modelling, 2020, 77 : 690 - 708