A catalogue of biochemically diverse CRISPR-Cas9 orthologs

被引:0
|
作者
Giedrius Gasiunas
Joshua K. Young
Tautvydas Karvelis
Darius Kazlauskas
Tomas Urbaitis
Monika Jasnauskaite
Mantvyda M. Grusyte
Sushmitha Paulraj
Po-Hao Wang
Zhenglin Hou
Shane K. Dooley
Mark Cigan
Clara Alarcon
N. Doane Chilcoat
Greta Bigelyte
Jennifer L. Curcuru
Megumu Mabuchi
Zhiyi Sun
Ryan T. Fuchs
Ezra Schildkraut
Peter R. Weigele
William E. Jack
G. Brett Robb
Česlovas Venclovas
Virginijus Siksnys
机构
[1] CasZyme,Department of Molecular Engineering
[2] Corteva Agriscience™,Institute of Biotechnology
[3] Vilnius University,Department of Agricultural and Biosystems Engineering
[4] Iowa State University,undefined
[5] New England Biolabs,undefined
[6] Inari Agriculture,undefined
[7] Genus plc,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Bacterial Cas9 nucleases from type II CRISPR-Cas antiviral defence systems have been repurposed as genome editing tools. Although these proteins are found in many microbes, only a handful of variants are used for these applications. Here, we use bioinformatic and biochemical analyses to explore this largely uncharacterized diversity. We apply cell-free biochemical screens to assess the protospacer adjacent motif (PAM) and guide RNA (gRNA) requirements of 79 Cas9 proteins, thus identifying at least 7 distinct gRNA classes and 50 different PAM sequence requirements. PAM recognition spans the entire spectrum of T-, A-, C-, and G-rich nucleotides, from single nucleotide recognition to sequence strings longer than 4 nucleotides. Characterization of a subset of Cas9 orthologs using purified components reveals additional biochemical diversity, including both narrow and broad ranges of temperature dependence, staggered-end DNA target cleavage, and a requirement for long stretches of homology between gRNA and DNA target. Our results expand the available toolset of RNA-programmable CRISPR-associated nucleases.
引用
收藏
相关论文
共 50 条
  • [41] The synchronized catalytic dance of CRISPR-Cas9
    Aakash Saha
    Chinmai Pindi
    Giulia Palermo
    Nature Catalysis, 2023, 6 : 870 - 872
  • [42] Inhibition of CRISPR-Cas9 with Bacteriophage Proteins
    Rauch, Benjamin J.
    Silvis, Melanie R.
    Hultquist, Judd F.
    Waters, Christopher S.
    McGregor, Michael J.
    Krogan, Nevan J.
    Bondy-Denomy, Joseph
    CELL, 2017, 168 (1-2) : 150 - +
  • [43] CRISPR-Cas9 dissection of heparan sulfate
    Weiss, Ryan J.
    Spahn, Philipp N.
    Lewis, Nathan E.
    Esko, Jeffrey D.
    CANCER RESEARCH, 2017, 77
  • [44] Biomaterials as vectors for the delivery of CRISPR-Cas9
    Eoh, Joon
    Gu, Luo
    BIOMATERIALS SCIENCE, 2019, 7 (04) : 1240 - 1261
  • [45] CRISPR-Cas9 for Drug Discovery in Oncology
    Guichard, Sylvie M.
    ANNUAL REPORTS IN MEDICINAL CHEMISTRY, VOL 50: PLATFORM TECHNOLOGIES IN DRUG DISCOVERY AND VALIDATION, 2017, 50 : 61 - 85
  • [46] Energy biotechnology in the CRISPR-Cas9 era
    Estrela, Raissa
    Cate, Jamie Harrison Doudna
    CURRENT OPINION IN BIOTECHNOLOGY, 2016, 38 : 79 - 84
  • [47] CRISPR-Cas9 Checkpoint Makes the Cut
    不详
    CHEMICAL ENGINEERING PROGRESS, 2017, 113 (09) : 5 - 5
  • [48] Modeling cancer processes with CRISPR-Cas9
    Lu, Xiao-Jie
    Qi, Xiaolong
    Zheng, Dong-Hui
    Ji, Li-Juan
    TRENDS IN BIOTECHNOLOGY, 2015, 33 (06) : 317 - 319
  • [49] Application of CRISPR-Cas9 in eye disease
    Wu, Wenyi
    Tang, Luosheng
    D'Amore, Patricia A.
    Lei, Hetian
    EXPERIMENTAL EYE RESEARCH, 2017, 161 : 116 - 123