A catalogue of biochemically diverse CRISPR-Cas9 orthologs

被引:0
|
作者
Giedrius Gasiunas
Joshua K. Young
Tautvydas Karvelis
Darius Kazlauskas
Tomas Urbaitis
Monika Jasnauskaite
Mantvyda M. Grusyte
Sushmitha Paulraj
Po-Hao Wang
Zhenglin Hou
Shane K. Dooley
Mark Cigan
Clara Alarcon
N. Doane Chilcoat
Greta Bigelyte
Jennifer L. Curcuru
Megumu Mabuchi
Zhiyi Sun
Ryan T. Fuchs
Ezra Schildkraut
Peter R. Weigele
William E. Jack
G. Brett Robb
Česlovas Venclovas
Virginijus Siksnys
机构
[1] CasZyme,Department of Molecular Engineering
[2] Corteva Agriscience™,Institute of Biotechnology
[3] Vilnius University,Department of Agricultural and Biosystems Engineering
[4] Iowa State University,undefined
[5] New England Biolabs,undefined
[6] Inari Agriculture,undefined
[7] Genus plc,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Bacterial Cas9 nucleases from type II CRISPR-Cas antiviral defence systems have been repurposed as genome editing tools. Although these proteins are found in many microbes, only a handful of variants are used for these applications. Here, we use bioinformatic and biochemical analyses to explore this largely uncharacterized diversity. We apply cell-free biochemical screens to assess the protospacer adjacent motif (PAM) and guide RNA (gRNA) requirements of 79 Cas9 proteins, thus identifying at least 7 distinct gRNA classes and 50 different PAM sequence requirements. PAM recognition spans the entire spectrum of T-, A-, C-, and G-rich nucleotides, from single nucleotide recognition to sequence strings longer than 4 nucleotides. Characterization of a subset of Cas9 orthologs using purified components reveals additional biochemical diversity, including both narrow and broad ranges of temperature dependence, staggered-end DNA target cleavage, and a requirement for long stretches of homology between gRNA and DNA target. Our results expand the available toolset of RNA-programmable CRISPR-associated nucleases.
引用
收藏
相关论文
共 50 条
  • [21] A Catalogue of Cas9 Orthologs to Advance Genome Engineering
    Wang, Eleanor
    Hsu, Patrick D.
    CRISPR JOURNAL, 2020, 3 (06): : 427 - 430
  • [22] CRISPR-Cas9 strikes out in cassava
    Rybicki, Edward P.
    NATURE BIOTECHNOLOGY, 2019, 37 (07) : 727 - 728
  • [23] CRISPR-CAS9 in medicine, the saga continues
    Becu-Villalobos, Damasia
    MEDICINA-BUENOS AIRES, 2019, 79 (06) : 522 - 523
  • [24] Advances in therapeutic application of CRISPR-Cas9
    Sun, Jinyu
    Wang, Jianchu
    Zheng, Donghui
    Hu, Xiaorong
    BRIEFINGS IN FUNCTIONAL GENOMICS, 2020, 19 (03) : 164 - 174
  • [25] The CRISPR-Cas9 system in Neisseria spp
    Zhang, Yan
    PATHOGENS AND DISEASE, 2017, 75 (04):
  • [26] Principles of DNA cleavage in CRISPR-Cas9
    Ahsan, Mohammad
    Nierzwicki, Qukasz
    East, Kyle W.
    Binz, Jonas
    Hsu, Rohaine V.
    Arantes, Pablo R.
    Skeens, Erin
    Pacesa, Martin
    Jinek, Martin
    Lisi, George P.
    Palermo, Giulia
    BIOPHYSICAL JOURNAL, 2023, 122 (03) : 170A - 170A
  • [27] CRISPR-Cas9 System: Opportunities and Concerns
    Vasiliou, Stella K.
    Diamandis, Eleftherios P.
    Church, George M.
    Greely, Henry T.
    Baylis, Francoise
    Thompson, Charis
    Schmitt-Ulms, Gerold
    CLINICAL CHEMISTRY, 2016, 62 (10) : 1304 - 1311
  • [28] Secondary Conformational Checkpoint in CRISPR-Cas9
    Zhao, Shuxin
    Liu, Jin
    Zuo, Zhicheng
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2024, 20 (09) : 3440 - 3448
  • [29] Who owns CRISPR-Cas9 in Europe?
    András Kupecz
    Nature Biotechnology, 2014, 32 : 1194 - 1196
  • [30] Chemistry Nobel Honors CRISPR-Cas9
    You Li-Lan
    Sun Wei
    Yang Xiao-Qi
    Wang Yan-Li
    PROGRESS IN BIOCHEMISTRY AND BIOPHYSICS, 2020, 47 (11) : 1119 - 1126