A catalogue of biochemically diverse CRISPR-Cas9 orthologs

被引:0
|
作者
Giedrius Gasiunas
Joshua K. Young
Tautvydas Karvelis
Darius Kazlauskas
Tomas Urbaitis
Monika Jasnauskaite
Mantvyda M. Grusyte
Sushmitha Paulraj
Po-Hao Wang
Zhenglin Hou
Shane K. Dooley
Mark Cigan
Clara Alarcon
N. Doane Chilcoat
Greta Bigelyte
Jennifer L. Curcuru
Megumu Mabuchi
Zhiyi Sun
Ryan T. Fuchs
Ezra Schildkraut
Peter R. Weigele
William E. Jack
G. Brett Robb
Česlovas Venclovas
Virginijus Siksnys
机构
[1] CasZyme,Department of Molecular Engineering
[2] Corteva Agriscience™,Institute of Biotechnology
[3] Vilnius University,Department of Agricultural and Biosystems Engineering
[4] Iowa State University,undefined
[5] New England Biolabs,undefined
[6] Inari Agriculture,undefined
[7] Genus plc,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Bacterial Cas9 nucleases from type II CRISPR-Cas antiviral defence systems have been repurposed as genome editing tools. Although these proteins are found in many microbes, only a handful of variants are used for these applications. Here, we use bioinformatic and biochemical analyses to explore this largely uncharacterized diversity. We apply cell-free biochemical screens to assess the protospacer adjacent motif (PAM) and guide RNA (gRNA) requirements of 79 Cas9 proteins, thus identifying at least 7 distinct gRNA classes and 50 different PAM sequence requirements. PAM recognition spans the entire spectrum of T-, A-, C-, and G-rich nucleotides, from single nucleotide recognition to sequence strings longer than 4 nucleotides. Characterization of a subset of Cas9 orthologs using purified components reveals additional biochemical diversity, including both narrow and broad ranges of temperature dependence, staggered-end DNA target cleavage, and a requirement for long stretches of homology between gRNA and DNA target. Our results expand the available toolset of RNA-programmable CRISPR-associated nucleases.
引用
收藏
相关论文
共 50 条
  • [31] The synchronized catalytic dance of CRISPR-Cas9
    Saha, Aakash
    Pindi, Chinmai
    Palermo, Giulia
    NATURE CATALYSIS, 2023, 6 (10) : 870 - 872
  • [32] Controlling CRISPR-Cas9 Gene Editing
    Dowdy, Steven F.
    NEW ENGLAND JOURNAL OF MEDICINE, 2019, 381 (03): : 289 - 290
  • [33] Multidimensional chemical control of CRISPR-Cas9
    Maji, Basudeb
    Moore, Christopher L.
    Zetsche, Bernd
    Volz, Sara E.
    Zhang, Feng
    Shoulders, Matthew D.
    Choudhary, Amit
    NATURE CHEMICAL BIOLOGY, 2017, 13 (01) : 9 - 11
  • [34] Introduction to CRISPR-Cas9 Gene Editing
    Mason, J. M.
    BIRTH DEFECTS RESEARCH, 2020, 112 (11): : 809 - 809
  • [35] Progress of delivery methods for CRISPR-Cas9
    Yang, Wu
    Yan, Jiaqi
    Zhuang, Pengzhen
    Ding, Tao
    Chen, Yu
    Zhang, Yu
    Zhang, Hongbo
    Cui, Wenguo
    EXPERT OPINION ON DRUG DELIVERY, 2022, 19 (08) : 913 - 926
  • [36] Chemical Control of a CRISPR-Cas9 Acetyltransferase
    Shrimp, Jonathan H.
    Grose, Carissa
    Widmeyer, Stephanie R. T.
    Thorpe, Abigail L.
    Jadhav, Ajit
    Meier, Jordan L.
    ACS CHEMICAL BIOLOGY, 2018, 13 (02) : 455 - 460
  • [37] CRISPR-Cas9 can cause chromothripsis
    Urnov, Fyodor D.
    NATURE GENETICS, 2021, 53 (06) : 768 - 769
  • [38] CRISPR-Cas9 Dissection of Heparan Sulfate
    Weiss, Ryan J.
    Spahn, Philipp N.
    Lewis, Nathan E.
    Esko, Jeffrey D.
    GLYCOBIOLOGY, 2017, 27 (12) : 1211 - 1211
  • [39] CRISPR-Cas9 for treating hereditary diseases
    Mani, Indra
    REPROGRAMMING THE GENOME: CRISPR-CAS-BASED HUMAN DISEASE THERAPY, 2021, 181 : 165 - 183
  • [40] CRISPR-Cas9 Applications in Cardiovascular Disease
    Khouzam, John Paul S.
    Tivakaran, Vijai S.
    CURRENT PROBLEMS IN CARDIOLOGY, 2021, 46 (03)