Dynamical behavior of solitons of the (2+1)-dimensional Konopelchenko Dubrovsky system

被引:0
|
作者
A. Hussain
T. Parveen
B. A. Younis
Huda U. M. Ahamd
T. F. Ibrahim
Mohammed Sallah
机构
[1] Government College University,Abdus Salam School of Mathematical Sciences
[2] Government College University,Department of Mathematics
[3] King Khalid University,Department of Mathematics, Faculty of Science
[4] King Khalid University,Department of Mathematics, Faculty of Arts and Science in Sarat Abida
[5] King Khalid University,Department of Mathematics, Faculty of Sciences and Arts (Mahayel)
[6] Mansoura University,Department of Mathematics, Faculty of Sciences
[7] Mansoura 35516,Applied Mathematical Physics Research Group, Physics Department, Faculty of Science
[8] Egypt,Department of Physics, College of Sciences
[9] Mansoura University,undefined
[10] University of Bisha,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Utilizing nonlinear evolution equations (NEEs) is common practice to establish the fundamental assumptions underlying natural phenomena. This paper examines the weakly dispersed non-linear waves in mathematical physics represented by the Konopelchenko-Dubrovsky (KD) equations. The (G′/G2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(G^\prime /G^2)$$\end{document}-expansion method is used to analyze the model under consideration. Using symbolic computations, the (G′/G2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(G^\prime /G^2)$$\end{document}-expansion method is used to produce solitary waves and soliton solutions to the (2+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2+1)$$\end{document}-dimensional KD model in terms of trigonometric, hyperbolic, and rational functions. Mathematica simulations are displayed using two, three, and density plots to demonstrate the obtained solitary wave solutions’ behavior. These proposed solutions have not been documented in the existing literature.
引用
收藏
相关论文
共 50 条
  • [41] Soliton molecules and some novel hybrid solutions for the(2+1)-dimensional generalized Konopelchenko–Dubrovsky–Kaup–Kupershmidt equation
    Hongcai Ma
    Qiaoxin Cheng
    Aiping Deng
    CommunicationsinTheoreticalPhysics, 2020, 72 (09) : 3 - 9
  • [42] Bifurcation analysis and solitary-like wave solutions for extended (2+1)-dimensional Konopelchenko-Dubrovsky equations
    Li, Yin
    Li, Shaoyong
    Wei, Ruiying
    NONLINEAR DYNAMICS, 2017, 88 (01) : 609 - 622
  • [43] Dynamical behavior of the fractional coupled Konopelchenko–Dubrovsky and (3 + 1)-dimensional modified Korteweg–de Vries–Zakharov–Kuznestsov equations
    Arslan Aslam
    Abdul Majeed
    Mohsin Kamran
    Mustafa Inc
    Rubayyi T. Alqahtani
    Optical and Quantum Electronics, 2023, 55
  • [44] Study on the behavior of oscillating solitons using the (2+1)-dimensional nonlinear system
    Pang, QingLe
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (05) : 2015 - 2023
  • [45] (2+1)维Konopelchenko-Dubrovsky方程新的多孤子解
    叶彩儿
    张卫国
    物理学报, 2010, 59 (08) : 5229 - 5234
  • [46] A Bilinear Neural Network Method for Solving a Generalized Fractional (2+1)-Dimensional Konopelchenko-Dubrovsky-Kaup-Kupershmidt Equation
    Tuan, Nguyen Minh
    Meesad, Phayung
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2025, 64 (01)
  • [47] Soliton solutions, Backlund transformation and Wronskian solutions for the extended (2+1)-dimensional Konopelchenko-Dubrovsky equations in fluid mechanics
    Xu, Peng-Bo
    Gao, Yi-Tian
    Gai, Xiao-Ling
    Meng, De-Xin
    Shen, Yu-Jia
    Wang, Lei
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (06) : 2489 - 2496
  • [48] Soliton molecules and some novel hybrid solutions for the (2+1)-dimensional generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt equation
    Ma, Hongcai
    Cheng, Qiaoxin
    Deng, Aiping
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2020, 72 (09)
  • [49] Instantaneous solitons and fractal solitons for a (2+1)-dimensional nonlinear system
    潘震环
    马松华
    方建平
    Chinese Physics B, 2010, (10) : 38 - 43
  • [50] Instantaneous solitons and fractal solitons for a (2+1)-dimensional nonlinear system
    Pan Zhen-Huan
    Ma Song-Hua
    Fang Jian-Ping
    CHINESE PHYSICS B, 2010, 19 (10)