Dynamical behavior of solitons of the (2+1)-dimensional Konopelchenko Dubrovsky system

被引:0
|
作者
A. Hussain
T. Parveen
B. A. Younis
Huda U. M. Ahamd
T. F. Ibrahim
Mohammed Sallah
机构
[1] Government College University,Abdus Salam School of Mathematical Sciences
[2] Government College University,Department of Mathematics
[3] King Khalid University,Department of Mathematics, Faculty of Science
[4] King Khalid University,Department of Mathematics, Faculty of Arts and Science in Sarat Abida
[5] King Khalid University,Department of Mathematics, Faculty of Sciences and Arts (Mahayel)
[6] Mansoura University,Department of Mathematics, Faculty of Sciences
[7] Mansoura 35516,Applied Mathematical Physics Research Group, Physics Department, Faculty of Science
[8] Egypt,Department of Physics, College of Sciences
[9] Mansoura University,undefined
[10] University of Bisha,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Utilizing nonlinear evolution equations (NEEs) is common practice to establish the fundamental assumptions underlying natural phenomena. This paper examines the weakly dispersed non-linear waves in mathematical physics represented by the Konopelchenko-Dubrovsky (KD) equations. The (G′/G2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(G^\prime /G^2)$$\end{document}-expansion method is used to analyze the model under consideration. Using symbolic computations, the (G′/G2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(G^\prime /G^2)$$\end{document}-expansion method is used to produce solitary waves and soliton solutions to the (2+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2+1)$$\end{document}-dimensional KD model in terms of trigonometric, hyperbolic, and rational functions. Mathematica simulations are displayed using two, three, and density plots to demonstrate the obtained solitary wave solutions’ behavior. These proposed solutions have not been documented in the existing literature.
引用
收藏
相关论文
共 50 条
  • [21] Nonlinear superposition of the (2+1)-dimensional generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt equation
    Ma, Hongcai
    Gao, Yidan
    Deng, Aiping
    NONLINEAR DYNAMICS, 2023, 111 (01) : 619 - 632
  • [22] Complexiton and resonant multiple wave solutions to the (2+1)-dimensional Konopelchenko-Dubrovsky equation
    Wu, Pinxia
    Zhang, Yufeng
    Muhammad, Iqbal
    Yin, Qiqi
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 76 (04) : 845 - 853
  • [23] Exact solutions of the (2+1)-dimensional Konopelchenko-Dubrovsky system using Sardar sub-equation method
    Tarla, Sibel
    Ali, Karmina K.
    Yusuf, Abdullahi
    Uzun, Berna
    Salahshour, Soheil
    MODERN PHYSICS LETTERS B, 2025, 39 (13):
  • [24] Novel soliton molecules, asymmetric solitons, W-shape and the breather wave solutions to the (2+1)-dimensional Konopelchenko-Dubrovsky equation
    Wang, Kang-Jia
    Shi, Feng
    Li, Shuai
    Xu, Peng
    EUROPEAN PHYSICAL JOURNAL PLUS, 2024, 139 (05):
  • [25] Lump soliton wave solutions for the (2+1)-dimensional Konopelchenko-Dubrovsky equation and KdV equation
    Khater, Mostafa M. A.
    Lu, Dianchen
    Attia, Raghda A. M.
    MODERN PHYSICS LETTERS B, 2019, 33 (18):
  • [26] Construction of N-soliton solutions to (2+1)-dimensional Konopelchenko-Dubrovsky (KD) equations
    Salas, Alvaro H.
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (18) : 7391 - 7399
  • [27] Lump waves, solitary waves and interaction phenomena to the (2+1)-dimensional Konopelchenko-Dubrovsky equation
    Liu, Wenhao
    Zhang, Yufeng
    Shi, Dandan
    PHYSICS LETTERS A, 2019, 383 (2-3) : 97 - 102
  • [28] Localized wave solutions to (2+1)-dimensional generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt equation
    Zhao, Shuang
    Wang, Hui
    Yu, Ming-Hui
    EUROPEAN PHYSICAL JOURNAL PLUS, 2024, 139 (08):
  • [29] Interactions among Periodic Waves and Solitary Waves of the (2+1)-Dimensional Konopelchenko-Dubrovsky Equation
    Lei Ya
    Lou Sen-Yue
    CHINESE PHYSICS LETTERS, 2013, 30 (06)
  • [30] On some novel exact solutions to the time fractional (2+1) dimensional Konopelchenko-Dubrovsky system arising in physical science
    Akhtar, Junaid
    Seadawy, Aly R.
    Tariq, Kalim U.
    Baleanu, Dumitru
    OPEN PHYSICS, 2020, 18 (01): : 806 - 819