Dynamical behavior of solitons of the (2+1)-dimensional Konopelchenko Dubrovsky system

被引:0
|
作者
A. Hussain
T. Parveen
B. A. Younis
Huda U. M. Ahamd
T. F. Ibrahim
Mohammed Sallah
机构
[1] Government College University,Abdus Salam School of Mathematical Sciences
[2] Government College University,Department of Mathematics
[3] King Khalid University,Department of Mathematics, Faculty of Science
[4] King Khalid University,Department of Mathematics, Faculty of Arts and Science in Sarat Abida
[5] King Khalid University,Department of Mathematics, Faculty of Sciences and Arts (Mahayel)
[6] Mansoura University,Department of Mathematics, Faculty of Sciences
[7] Mansoura 35516,Applied Mathematical Physics Research Group, Physics Department, Faculty of Science
[8] Egypt,Department of Physics, College of Sciences
[9] Mansoura University,undefined
[10] University of Bisha,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Utilizing nonlinear evolution equations (NEEs) is common practice to establish the fundamental assumptions underlying natural phenomena. This paper examines the weakly dispersed non-linear waves in mathematical physics represented by the Konopelchenko-Dubrovsky (KD) equations. The (G′/G2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(G^\prime /G^2)$$\end{document}-expansion method is used to analyze the model under consideration. Using symbolic computations, the (G′/G2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(G^\prime /G^2)$$\end{document}-expansion method is used to produce solitary waves and soliton solutions to the (2+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2+1)$$\end{document}-dimensional KD model in terms of trigonometric, hyperbolic, and rational functions. Mathematica simulations are displayed using two, three, and density plots to demonstrate the obtained solitary wave solutions’ behavior. These proposed solutions have not been documented in the existing literature.
引用
收藏
相关论文
共 50 条
  • [31] Interactions among Periodic Waves and Solitary Waves of the(2+1)-Dimensional Konopelchenko-Dubrovsky Equation
    雷娅
    楼森岳
    Chinese Physics Letters, 2013, 30 (06) : 9 - 12
  • [32] MOLECULES AND NEW INTERACTIONAL STRUCTURES FOR A(2+1)-DIMENSIONAL GENERALIZED KONOPELCHENKO-DUBROVSKY-KAUP-KUPERSHMIDT EQUATION
    李岩
    姚若侠
    夏亚荣
    Acta Mathematica Scientia, 2023, 43 (01) : 80 - 96
  • [33] Numerical Soliton Solutions of Fractional Modified (2+1)-Dimensional Konopelchenko-Dubrovsky Equations in Plasma Physics
    Ray, S. Saha
    Sagar, B.
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2022, 17 (01):
  • [34] Wronskian solution, Bäcklund transformation and Painlevé analysis to a (2+1)-dimensional Konopelchenko-Dubrovsky equation
    Gao, Di
    Ma, Wen-Xiu
    Lu, Xing
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2024, 79 (09): : 887 - 895
  • [35] Molecules and New Interactional Structures for a (2+1)-Dimensional Generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt Equation
    Li, Yan
    Yao, Ruoxia
    Xia, Yarong
    ACTA MATHEMATICA SCIENTIA, 2023, 43 (01) : 80 - 96
  • [36] Bilinear form and Pfaffian solutions for a (2+1)-dimensional generalized Konopelchenko–Dubrovsky–Kaup–Kupershmidt system in fluid mechanics and plasma physics
    Chong-Dong Cheng
    Bo Tian
    Yuan Shen
    Tian-Yu Zhou
    Nonlinear Dynamics, 2023, 111 : 6659 - 6675
  • [37] Analytical solutions for the generalized (2+1)-dimensional Konopelchenko-Dubrovsky equation via Lie symmetry analysis
    Muduli, Tapan Kumar
    Satapathy, Purnima
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2025, 465
  • [38] Molecules and New Interactional Structures for a (2+1)-Dimensional Generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt Equation
    Yan Li
    Ruoxia Yao
    Yarong Xia
    Acta Mathematica Scientia, 2023, 43 : 80 - 96
  • [39] Solitons for a (2+1)-dimensional variable-coefficient Bogoyavlensky-Konopelchenko equation in a fluid
    Wang, Ya-Le
    Gao, Yi-Tian
    Jia, Shu-Liang
    Deng, Gao-Fu
    Hu, Wen-Qiang
    MODERN PHYSICS LETTERS B, 2017, 31 (25):
  • [40] Bilinear form and Pfaffian solutions for a (2+1)-dimensional generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt system in fluid mechanics and plasma physics
    Cheng, Chong-Dong
    Tian, Bo
    Shen, Yuan
    Zhou, Tian-Yu
    NONLINEAR DYNAMICS, 2023, 111 (7) : 6659 - 6675