Wronskian solution, Bäcklund transformation and Painlevé analysis to a (2+1)-dimensional Konopelchenko-Dubrovsky equation

被引:1
|
作者
Gao, Di [5 ]
Ma, Wen-Xiu [1 ,2 ,3 ,4 ]
Lu, Xing [5 ,6 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
[2] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
[3] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA
[4] North West Univ, Dept Math Sci, Mat Sci Innovat & Modelling, Mafikeng Campus, ZA-2735 Mmabatho, South Africa
[5] Beijing Jiaotong Univ, Dept Math, Beijing 100044, Peoples R China
[6] Beijing Jiaotong Univ, Beijing Lab Natl Econ Secur Early Warning Engn, Beijing 100044, Peoples R China
基金
中国国家自然科学基金;
关键词
Wronskian solution; bilinear B & auml; cklund transformation; Bell polynomial; Painlev & eacute; analysis; NONLINEAR EVOLUTION-EQUATIONS; WAVE SOLUTIONS; KDV; COMPLEXITON; SOLITONS; POSITON;
D O I
10.1515/zna-2024-0016
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The main work of this paper is to construct the Wronskian solution and investigate the integrability characteristics of the (2 + 1)-dimensional Konopelchenko-Dubrovsky equation. Firstly, the Wronskian technique is used to acquire a sufficient condition of the Wronskian solution. According to the Wronskian form, the soliton solution is obtained by selecting the elements in the determinant that satisfy the linear partial differential systems. Secondly, the bilinear B & auml;cklund transformation and Bell-polynomial-typed B & auml;cklund transformation are derived directly via the Hirota bilinear method and the Bell polynomial theory, respectively. Finally, Painlev & eacute; analysis proves that this equation possesses the Painlev & eacute; property, and a Painlev & eacute;-typed B & auml;cklund transformation is constructed to solve a family of exact solutions by selecting appropriate seed solution. It shows that the Wronskian technique, B & auml;cklund transformation, Bell polynomial and Painlev & eacute; analysis are applicable to obtain the exact solutions of the nonlinear evolution equations, e.g., soliton solution, single-wave solution and two-wave solution.
引用
收藏
页码:887 / 895
页数:9
相关论文
共 50 条
  • [1] Painlevé Analysis,Soliton Solutions and Bcklund Transformation for Extended (2 + 1)-Dimensional Konopelchenko-Dubrovsky Equations in Fluid Mechanics via Symbolic Computation
    许鹏博
    高以天
    于鑫
    王雷
    林国栋
    Communications in Theoretical Physics, 2011, 55 (06) : 1017 - 1023
  • [2] Multiple lump solutions of the (2+1)-dimensional Konopelchenko-Dubrovsky equation
    Ma, Hongcai
    Bai, Yunxiang
    Deng, Aiping
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (12) : 7135 - 7142
  • [3] New exact solutions to the (2+1)-dimensional Konopelchenko-Dubrovsky equation
    Wang, Yang
    Wei, Long
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (02) : 216 - 224
  • [4] Explicit exact solutions for the (2+1)-dimensional Konopelchenko-Dubrovsky equation
    Feng, Wei-Gui
    Lin, Chang
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 210 (02) : 298 - 302
  • [5] Solitons for the (2+1)-dimensional Konopelchenko-Dubrovsky equations
    Yuan, Yu-Qiang
    Tian, Bo
    Liu, Lei
    Wu, Xiao-Yu
    Sun, Yan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 460 (01) : 476 - 486
  • [6] Soliton solutions, Backlund transformation and Wronskian solutions for the extended (2+1)-dimensional Konopelchenko-Dubrovsky equations in fluid mechanics
    Xu, Peng-Bo
    Gao, Yi-Tian
    Gai, Xiao-Ling
    Meng, De-Xin
    Shen, Yu-Jia
    Wang, Lei
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (06) : 2489 - 2496
  • [7] The Sic-dressing method for the (2+1)-dimensional Konopelchenko-Dubrovsky equation
    Chai, Xuedong
    Zhang, Yufeng
    APPLIED MATHEMATICS LETTERS, 2022, 134
  • [8] Solitons, breathers and rational solutions for the (2+1)-dimensional Konopelchenko-Dubrovsky equation
    Dong, Min-Jie
    Tian, Li-Xin
    Shi, Wei
    Wei, Jing-Dong
    Wang, Yun
    NONLINEAR DYNAMICS, 2024, 112 (12) : 10259 - 10275
  • [9] New kinks and solitons solutions to the (2+1)-dimensional Konopelchenko-Dubrovsky equation
    Wazwaz, Abdul-Majid
    MATHEMATICAL AND COMPUTER MODELLING, 2007, 45 (3-4) : 473 - 479
  • [10] Solitons for the modified (2+1)-dimensional Konopelchenko-Dubrovsky equations
    Lyu, Xiumei
    Gu, Wei
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (01):