The Sic-dressing method for the (2+1)-dimensional Konopelchenko-Dubrovsky equation

被引:8
|
作者
Chai, Xuedong [1 ]
Zhang, Yufeng [1 ]
机构
[1] China Univ Min & Technol, Sch Math, Xuzhou 221116, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Sic-dressing method; Green's function; Eigenfunction; Konopelchenko-Dubrovsky equation; Inverse spectral problem; NONLINEAR EVOLUTION-EQUATIONS; INVERSE SCATTERING TRANSFORM; (PARTIAL-DERIVATIVE)OVER-BAR-DRESSING METHOD;
D O I
10.1016/j.aml.2022.108378
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A novel systematical solution procedure of the (2+1)-dimensional Konopelchenko- Dubrovsky equation is employed on the basis of the partial differential over line -dressing method. The eigenfunctions and Green's function of the Lax pair play a fairly important role in constructing the scattering equation. By analyzing the analyticity of the eigenfunctions and Green's function, a new partial differential over line problem is introduced to help explore the solution with the help of Cauchy-Green formula and choosing the proper spectral transformation. Furthermore, we can work out the solution formally of the Konopelchenko-Dubrovsky equation from inverse spectral problem once the time evolution of the spectral data is determined. (C) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Multiple lump solutions of the (2+1)-dimensional Konopelchenko-Dubrovsky equation
    Ma, Hongcai
    Bai, Yunxiang
    Deng, Aiping
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (12) : 7135 - 7142
  • [2] New exact solutions to the (2+1)-dimensional Konopelchenko-Dubrovsky equation
    Wang, Yang
    Wei, Long
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (02) : 216 - 224
  • [3] Explicit exact solutions for the (2+1)-dimensional Konopelchenko-Dubrovsky equation
    Feng, Wei-Gui
    Lin, Chang
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 210 (02) : 298 - 302
  • [4] Solitons for the (2+1)-dimensional Konopelchenko-Dubrovsky equations
    Yuan, Yu-Qiang
    Tian, Bo
    Liu, Lei
    Wu, Xiao-Yu
    Sun, Yan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 460 (01) : 476 - 486
  • [5] Solitons, breathers and rational solutions for the (2+1)-dimensional Konopelchenko-Dubrovsky equation
    Dong, Min-Jie
    Tian, Li-Xin
    Shi, Wei
    Wei, Jing-Dong
    Wang, Yun
    NONLINEAR DYNAMICS, 2024, 112 (12) : 10259 - 10275
  • [6] New kinks and solitons solutions to the (2+1)-dimensional Konopelchenko-Dubrovsky equation
    Wazwaz, Abdul-Majid
    MATHEMATICAL AND COMPUTER MODELLING, 2007, 45 (3-4) : 473 - 479
  • [7] Solitons for the modified (2+1)-dimensional Konopelchenko-Dubrovsky equations
    Lyu, Xiumei
    Gu, Wei
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (01):
  • [8] Lump soliton wave solutions for the (2+1)-dimensional Konopelchenko-Dubrovsky equation and KdV equation
    Khater, Mostafa M. A.
    Lu, Dianchen
    Attia, Raghda A. M.
    MODERN PHYSICS LETTERS B, 2019, 33 (18):
  • [9] Complexiton and resonant multiple wave solutions to the (2+1)-dimensional Konopelchenko-Dubrovsky equation
    Wu, Pinxia
    Zhang, Yufeng
    Muhammad, Iqbal
    Yin, Qiqi
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 76 (04) : 845 - 853
  • [10] New multisoliton solutions for (2+1) dimensional Konopelchenko-Dubrovsky equations
    Ye Cai-Er
    Zhang Wei-Guo
    ACTA PHYSICA SINICA, 2010, 59 (08) : 5229 - 5234