The Sic-dressing method for the (2+1)-dimensional Konopelchenko-Dubrovsky equation

被引:8
|
作者
Chai, Xuedong [1 ]
Zhang, Yufeng [1 ]
机构
[1] China Univ Min & Technol, Sch Math, Xuzhou 221116, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Sic-dressing method; Green's function; Eigenfunction; Konopelchenko-Dubrovsky equation; Inverse spectral problem; NONLINEAR EVOLUTION-EQUATIONS; INVERSE SCATTERING TRANSFORM; (PARTIAL-DERIVATIVE)OVER-BAR-DRESSING METHOD;
D O I
10.1016/j.aml.2022.108378
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A novel systematical solution procedure of the (2+1)-dimensional Konopelchenko- Dubrovsky equation is employed on the basis of the partial differential over line -dressing method. The eigenfunctions and Green's function of the Lax pair play a fairly important role in constructing the scattering equation. By analyzing the analyticity of the eigenfunctions and Green's function, a new partial differential over line problem is introduced to help explore the solution with the help of Cauchy-Green formula and choosing the proper spectral transformation. Furthermore, we can work out the solution formally of the Konopelchenko-Dubrovsky equation from inverse spectral problem once the time evolution of the spectral data is determined. (C) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Bifurcation analysis and solitary-like wave solutions for extended (2+1)-dimensional Konopelchenko-Dubrovsky equations
    Li, Yin
    Li, Shaoyong
    Wei, Ruiying
    NONLINEAR DYNAMICS, 2017, 88 (01) : 609 - 622
  • [42] Exact Travelling Wave Solutions for Konopelchenko-Dubrovsky Equation by the First Integral Method
    Taghizadeh, N.
    Mirzazadeh, M.
    APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2011, 6 (01): : 153 - 161
  • [43] Nonlinear superposition of the (2+1)-dimensional generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt equation
    Ma, Hongcai
    Gao, Yidan
    Deng, Aiping
    NONLINEAR DYNAMICS, 2023, 111 (01) : 619 - 632
  • [44] On some novel exact solutions to the time fractional (2+1) dimensional Konopelchenko-Dubrovsky system arising in physical science
    Akhtar, Junaid
    Seadawy, Aly R.
    Tariq, Kalim U.
    Baleanu, Dumitru
    OPEN PHYSICS, 2020, 18 (01): : 806 - 819
  • [45] Soliton solutions, Backlund transformation and Wronskian solutions for the extended (2+1)-dimensional Konopelchenko-Dubrovsky equations in fluid mechanics
    Xu, Peng-Bo
    Gao, Yi-Tian
    Gai, Xiao-Ling
    Meng, De-Xin
    Shen, Yu-Jia
    Wang, Lei
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (06) : 2489 - 2496
  • [46] Solutions of Jimbo-Miwa Equation and Konopelchenko-Dubrovsky Equations
    Cao, Bintao
    ACTA APPLICANDAE MATHEMATICAE, 2010, 112 (02) : 181 - 203
  • [47] Solutions of Jimbo-Miwa Equation and Konopelchenko-Dubrovsky Equations
    Bintao Cao
    Acta Applicandae Mathematicae, 2010, 112 : 181 - 203
  • [48] Dynamical behavior of solitons of the (2+1)-dimensional Konopelchenko Dubrovsky system
    A. Hussain
    T. Parveen
    B. A. Younis
    Huda U. M. Ahamd
    T. F. Ibrahim
    Mohammed Sallah
    Scientific Reports, 14
  • [49] Interactions Between Solitons and Cnoidal Periodic Waves of the(2+1)-Dimensional Konopelchenko–Dubrovsky Equation
    余炜沣
    楼森岳
    俞军
    杨铎
    Communications in Theoretical Physics, 2014, 62 (09) : 297 - 300
  • [50] Explicit and exact travelling wave solutions for Konopelchenko-Dubrovsky equation
    Li, Bacui
    Zhang, Yufeng
    CHAOS SOLITONS & FRACTALS, 2008, 38 (04) : 1202 - 1208