Solutions of Jimbo-Miwa Equation and Konopelchenko-Dubrovsky Equations

被引:0
|
作者
Bintao Cao
机构
[1] Chinese Academy of Sciences,Institute of Mathematics, Academy of Mathematics and Systems Science
来源
关键词
Jimbo-Miwa; Konopelchenko-Dubrovsky; Stable-range; Logarithmic stable-range; 35Q51; 35C10; 35C15;
D O I
暂无
中图分类号
学科分类号
摘要
The Jimbo-Miwa equation is the second equation in the well known KP hierarchy of integrable systems, which is used to describe certain interesting (3+1)-dimensional waves in physics but not pass any of the conventional integrability tests. The Konopelchenko-Dubrovsky equations arose in physics in connection with the nonlinear weaves with a weak dispersion. In this paper, we obtain two families of explicit exact solutions with multiple parameter functions for these equations by using Xu’s stable-range method and our logarithmic generalization of the stable-range method. These parameter functions make our solutions more applicable to related practical models and boundary value problems.
引用
收藏
页码:181 / 203
页数:22
相关论文
共 50 条
  • [1] Solutions of Jimbo-Miwa Equation and Konopelchenko-Dubrovsky Equations
    Cao, Bintao
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2010, 112 (02) : 181 - 203
  • [2] Soliton solutions to the Jimbo-Miwa equations and the Fordy-Gibbons-Jimbo-Miwa equation
    Hu, XB
    Wang, DL
    Tam, HW
    Xue, WM
    [J]. PHYSICS LETTERS A, 1999, 262 (4-5) : 310 - 320
  • [3] Periodic Wave Solutions for Konopelchenko-Dubrovsky Equation
    ZHANG Jin-liang
    Department of Mathematics
    Department of Finance
    [J]. Chinese Quarterly Journal of Mathematics, 2005, (01) : 72 - 78
  • [4] Multi-soliton solutions of the Konopelchenko-Dubrovsky equation
    Lin, J
    Lou, SY
    Wang, KL
    [J]. CHINESE PHYSICS LETTERS, 2001, 18 (09) : 1173 - 1175
  • [5] Explicit and exact nontravelling wave solutions of Konopelchenko-Dubrovsky equations
    Zhang, Sheng
    [J]. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2007, 62 (12): : 689 - 697
  • [6] Explicit and exact travelling wave solutions for Konopelchenko-Dubrovsky equation
    Li, Bacui
    Zhang, Yufeng
    [J]. CHAOS SOLITONS & FRACTALS, 2008, 38 (04) : 1202 - 1208
  • [7] Lump and lump kink solutions of the (3+1)-dimensional Jimbo-Miwa and two extended Jimbo-Miwa equations
    Sun, Hong-Qian
    Chen, Ai-Hua
    [J]. APPLIED MATHEMATICS LETTERS, 2017, 68 : 55 - 61
  • [8] The -dimensional Konopelchenko-Dubrovsky equation: nonlocal symmetries and interaction solutions
    Ren, Bo
    Cheng, Xue-Ping
    Lin, Ji
    [J]. NONLINEAR DYNAMICS, 2016, 86 (03) : 1855 - 1862
  • [9] Infinitely Many Symmetries of Konopelchenko-Dubrovsky Equation
    LI Zhi--Fang
    RUAN Hang--Yu Department of Physics
    [J]. Communications in Theoretical Physics, 2005, 44 (09) : 385 - 388
  • [10] Interaction solutions for a reduced extended -dimensional Jimbo-Miwa equation
    Wang, Yun-Hu
    Wang, Hui
    Dong, Huan-He
    Zhang, Hong-Sheng
    Temuer, Chaolu
    [J]. NONLINEAR DYNAMICS, 2018, 92 (02) : 487 - 497