Wronskian solution, Bäcklund transformation and Painlevé analysis to a (2+1)-dimensional Konopelchenko-Dubrovsky equation

被引:1
|
作者
Gao, Di [5 ]
Ma, Wen-Xiu [1 ,2 ,3 ,4 ]
Lu, Xing [5 ,6 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
[2] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
[3] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA
[4] North West Univ, Dept Math Sci, Mat Sci Innovat & Modelling, Mafikeng Campus, ZA-2735 Mmabatho, South Africa
[5] Beijing Jiaotong Univ, Dept Math, Beijing 100044, Peoples R China
[6] Beijing Jiaotong Univ, Beijing Lab Natl Econ Secur Early Warning Engn, Beijing 100044, Peoples R China
基金
中国国家自然科学基金;
关键词
Wronskian solution; bilinear B & auml; cklund transformation; Bell polynomial; Painlev & eacute; analysis; NONLINEAR EVOLUTION-EQUATIONS; WAVE SOLUTIONS; KDV; COMPLEXITON; SOLITONS; POSITON;
D O I
10.1515/zna-2024-0016
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The main work of this paper is to construct the Wronskian solution and investigate the integrability characteristics of the (2 + 1)-dimensional Konopelchenko-Dubrovsky equation. Firstly, the Wronskian technique is used to acquire a sufficient condition of the Wronskian solution. According to the Wronskian form, the soliton solution is obtained by selecting the elements in the determinant that satisfy the linear partial differential systems. Secondly, the bilinear B & auml;cklund transformation and Bell-polynomial-typed B & auml;cklund transformation are derived directly via the Hirota bilinear method and the Bell polynomial theory, respectively. Finally, Painlev & eacute; analysis proves that this equation possesses the Painlev & eacute; property, and a Painlev & eacute;-typed B & auml;cklund transformation is constructed to solve a family of exact solutions by selecting appropriate seed solution. It shows that the Wronskian technique, B & auml;cklund transformation, Bell polynomial and Painlev & eacute; analysis are applicable to obtain the exact solutions of the nonlinear evolution equations, e.g., soliton solution, single-wave solution and two-wave solution.
引用
收藏
页码:887 / 895
页数:9
相关论文
共 50 条
  • [31] Bifurcation analysis and solitary-like wave solutions for extended (2+1)-dimensional Konopelchenko-Dubrovsky equations
    Li, Yin
    Li, Shaoyong
    Wei, Ruiying
    NONLINEAR DYNAMICS, 2017, 88 (01) : 609 - 622
  • [32] Numerical Soliton Solutions of Fractional Modified (2+1)-Dimensional Konopelchenko-Dubrovsky Equations in Plasma Physics
    Ray, S. Saha
    Sagar, B.
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2022, 17 (01):
  • [33] Painleve Analysis, Soliton Solutions and Backlund Transformation for Extended (2+1)-Dimensional Konopelchenko-Dubrovsky Equations in Fluid Mechanics via Symbolic Computation
    Xu Peng-Bo
    Gao Yi-Tian
    Yu Xin
    Wang Lei
    Lin Guo-Dong
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2011, 55 (06) : 1017 - 1023
  • [34] Dynamical behavior of analytical soliton solutions, bifurcation analysis, and quasi-periodic solution to the (2+1)-dimensional Konopelchenko-Dubrovsky (KD) system
    Kumar, Sachin
    Mann, Nikita
    Kharbanda, Harsha
    Inc, Mustafa
    ANALYSIS AND MATHEMATICAL PHYSICS, 2023, 13 (03)
  • [35] ON EXACT AND APPROXIMATE SOLUTIONS OF (2+1)-D KONOPELCHENKO-DUBROVSKY EQUATION VIA MODIFIED SIMPLEST EQUATION AND CUBIC B-SPLINE SCHEMES
    Alfalqi, Suleman H.
    Alzaidi, Jameel F.
    Lu, Dianchen
    Khater, Mostafa M. A.
    THERMAL SCIENCE, 2019, 23 : S1889 - S1899
  • [36] Novel soliton molecules, asymmetric solitons, W-shape and the breather wave solutions to the (2+1)-dimensional Konopelchenko-Dubrovsky equation
    Wang, Kang-Jia
    Shi, Feng
    Li, Shuai
    Xu, Peng
    EUROPEAN PHYSICAL JOURNAL PLUS, 2024, 139 (05):
  • [37] (2+1)维Konopelchenko-Dubrovsky方程新的多孤子解
    叶彩儿
    张卫国
    物理学报, 2010, 59 (08) : 5229 - 5234
  • [38] Nonlinear superposition of the (2+1)-dimensional generalized Konopelchenko–Dubrovsky–Kaup–Kupershmidt equation
    Hongcai Ma
    Yidan Gao
    Aiping Deng
    Nonlinear Dynamics, 2023, 111 : 619 - 632
  • [39] Exp-function method for Riccati equation and new exact solutions with two arbitrary functions of (2+1)-dimensional Konopelchenko-Dubrovsky equations
    Zhang, Sheng
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (05) : 1546 - 1552
  • [40] Nonlinear superposition of the (2+1)-dimensional generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt equation
    Ma, Hongcai
    Gao, Yidan
    Deng, Aiping
    NONLINEAR DYNAMICS, 2023, 111 (01) : 619 - 632