Dynamical behavior of solitons of the (2+1)-dimensional Konopelchenko Dubrovsky system

被引:0
|
作者
A. Hussain
T. Parveen
B. A. Younis
Huda U. M. Ahamd
T. F. Ibrahim
Mohammed Sallah
机构
[1] Government College University,Abdus Salam School of Mathematical Sciences
[2] Government College University,Department of Mathematics
[3] King Khalid University,Department of Mathematics, Faculty of Science
[4] King Khalid University,Department of Mathematics, Faculty of Arts and Science in Sarat Abida
[5] King Khalid University,Department of Mathematics, Faculty of Sciences and Arts (Mahayel)
[6] Mansoura University,Department of Mathematics, Faculty of Sciences
[7] Mansoura 35516,Applied Mathematical Physics Research Group, Physics Department, Faculty of Science
[8] Egypt,Department of Physics, College of Sciences
[9] Mansoura University,undefined
[10] University of Bisha,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Utilizing nonlinear evolution equations (NEEs) is common practice to establish the fundamental assumptions underlying natural phenomena. This paper examines the weakly dispersed non-linear waves in mathematical physics represented by the Konopelchenko-Dubrovsky (KD) equations. The (G′/G2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(G^\prime /G^2)$$\end{document}-expansion method is used to analyze the model under consideration. Using symbolic computations, the (G′/G2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(G^\prime /G^2)$$\end{document}-expansion method is used to produce solitary waves and soliton solutions to the (2+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2+1)$$\end{document}-dimensional KD model in terms of trigonometric, hyperbolic, and rational functions. Mathematica simulations are displayed using two, three, and density plots to demonstrate the obtained solitary wave solutions’ behavior. These proposed solutions have not been documented in the existing literature.
引用
收藏
相关论文
共 50 条
  • [1] Dynamical behavior of solitons of the (2+1)-dimensional Konopelchenko Dubrovsky system
    Hussain, A.
    Parveen, T.
    Younis, B. A.
    Ahamd, Huda U. M.
    Ibrahim, T. F.
    Sallah, Mohammed
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [2] Solitons for the (2+1)-dimensional Konopelchenko-Dubrovsky equations
    Yuan, Yu-Qiang
    Tian, Bo
    Liu, Lei
    Wu, Xiao-Yu
    Sun, Yan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 460 (01) : 476 - 486
  • [3] Solitons for the modified (2+1)-dimensional Konopelchenko-Dubrovsky equations
    Lyu, Xiumei
    Gu, Wei
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (01):
  • [4] Dynamical and physical characteristics of soliton solutions to the (2+1)-dimensional Konopelchenko-Dubrovsky system
    Alruwaili, Abdulmohsen D.
    Seadawy, Aly R.
    Ali, Asghar
    Aldandani, Mohammed M.
    OPEN PHYSICS, 2023, 21 (01):
  • [5] Solitons, breathers and rational solutions for the (2+1)-dimensional Konopelchenko-Dubrovsky equation
    Dong, Min-Jie
    Tian, Li-Xin
    Shi, Wei
    Wei, Jing-Dong
    Wang, Yun
    NONLINEAR DYNAMICS, 2024, 112 (12) : 10259 - 10275
  • [6] New kinks and solitons solutions to the (2+1)-dimensional Konopelchenko-Dubrovsky equation
    Wazwaz, Abdul-Majid
    MATHEMATICAL AND COMPUTER MODELLING, 2007, 45 (3-4) : 473 - 479
  • [7] Interactions Between Solitons and Cnoidal Periodic Waves of the(2+1)-Dimensional Konopelchenko–Dubrovsky Equation
    余炜沣
    楼森岳
    俞军
    杨铎
    Communications in Theoretical Physics, 2014, 62 (09) : 297 - 300
  • [8] Interactions Between Solitons and Cnoidal Periodic Waves of the (2+1)-Dimensional Konopelchenko-Dubrovsky Equation
    Yu Wei-Feng
    Lou Sen-Yue
    Yu Jun
    Yang Duo
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2014, 62 (03) : 297 - 300
  • [9] Dynamical behavior of analytical soliton solutions, bifurcation analysis, and quasi-periodic solution to the (2+1)-dimensional Konopelchenko–Dubrovsky (KD) system
    Sachin Kumar
    Nikita Mann
    Harsha Kharbanda
    Mustafa Inc
    Analysis and Mathematical Physics, 2023, 13
  • [10] Dynamical behavior of analytical soliton solutions, bifurcation analysis, and quasi-periodic solution to the (2+1)-dimensional Konopelchenko-Dubrovsky (KD) system
    Kumar, Sachin
    Mann, Nikita
    Kharbanda, Harsha
    Inc, Mustafa
    ANALYSIS AND MATHEMATICAL PHYSICS, 2023, 13 (03)