Study on the behavior of oscillating solitons using the (2+1)-dimensional nonlinear system

被引:5
|
作者
Pang, QingLe [1 ]
机构
[1] Shandong Inst Business & Technol, Sch Informat & Elect Engn, Yantai 264005, Peoples R China
基金
中国国家自然科学基金;
关键词
Extended homogenous balance method; Variable separation hypothesis; Nonlinear model; (2+1)-Dimensional BK equations; Oscillating solitons; SOLITARY WAVES;
D O I
10.1016/j.amc.2010.07.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By means of an extended homogeneous balance method and a variable separation hypothesis, a broad general variable separation solution with three specific arbitrary functions of the nonlinear (2+1)-dimensional Broer-Kaup (BK) equations was derived. Based on the derived solution, a number of abundant oscillating solitons, such as dromion, multi-dromion, solitoff, ring, multi-lump and so on, have been revealed in this study by selecting appropriate functions of the general variable separation solution. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:2015 / 2023
页数:9
相关论文
共 50 条
  • [1] Oscillating Solitons for(2+1)-Dimensional Nonlinear Models
    Naranmandula
    Tubuxin
    [J]. Communications in Theoretical Physics, 2007, 47 (02) : 282 - 286
  • [2] Oscillating solitons for (2+1)-dimensional nonlinear models
    Naranmandula
    Bao Gang
    Tubuxin
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2007, 47 (02) : 282 - 286
  • [3] Instantaneous solitons and fractal solitons for a (2+1)-dimensional nonlinear system
    潘震环
    马松华
    方建平
    [J]. Chinese Physics B, 2010, 19 (10) : 38 - 43
  • [4] Instantaneous solitons and fractal solitons for a (2+1)-dimensional nonlinear system
    Pan Zhen-Huan
    Ma Song-Hua
    Fang Jian-Ping
    [J]. CHINESE PHYSICS B, 2010, 19 (10)
  • [5] Dynamical behavior of solitons of the (2+1)-dimensional Konopelchenko Dubrovsky system
    A. Hussain
    T. Parveen
    B. A. Younis
    Huda U. M. Ahamd
    T. F. Ibrahim
    Mohammed Sallah
    [J]. Scientific Reports, 14
  • [6] Dynamical behavior of solitons of the (2+1)-dimensional Konopelchenko Dubrovsky system
    Hussain, A.
    Parveen, T.
    Younis, B. A.
    Ahamd, Huda U. M.
    Ibrahim, T. F.
    Sallah, Mohammed
    [J]. SCIENTIFIC REPORTS, 2024, 14 (01)
  • [7] (2+1)-Dimensional Envelope Solitons in Nonlinear Magnetic Metamaterials
    Cui Wei-Na
    Zhu Yong-Yuan
    Li Hong-Xia
    Liu Su-Mei
    [J]. CHINESE PHYSICS LETTERS, 2010, 27 (11)
  • [8] Vector solitons for the (2+1)-dimensional coupled nonlinear Schrodinger system in the Kerr nonlinear optical fiber
    Sun, Yan
    Tian, Bo
    Qu, Qi-Xing
    Chai, Han-Peng
    Yuan, Yu-Qiang
    Shan, Wen-Rui
    Jiang, Yan
    [J]. ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2021, 101 (10):
  • [9] Annihilation solitons and chaotic solitons for the (2+1)-dimensional breaking soliton system
    Ma Song-Hua
    Qiang Ji-Ye
    Fang Jian-Ping
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2007, 48 (04) : 662 - 666
  • [10] Coupled nonlinear system in (2+1) dimension and overturning solitons
    Ghosh, C
    Chowdhury, AR
    [J]. ACTA PHYSICA POLONICA A, 1996, 89 (04) : 459 - 466