Instantaneous solitons and fractal solitons for a (2+1)-dimensional nonlinear system

被引:10
|
作者
Pan Zhen-Huan [1 ]
Ma Song-Hua [1 ]
Fang Jian-Ping [1 ]
机构
[1] Zhejiang Lishui Univ, Dept Phys, Lishui 323000, Peoples R China
关键词
improved projective equation approach; Broek-Kaup system; exact solutions; instantaneous solitons and fractal solitons; COHERENT STRUCTURES; EQUATION; EXCITATIONS; EVOLUTION;
D O I
10.1088/1674-1056/19/10/100301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By an improved projective equation approach and a linear variable separation approach, a new family of exact solutions of the (2+1)-dimensional Broek-Kaup system is derived. Based on the derived solitary wave solution and by selecting appropriate functions, some novel localized excitations such as instantaneous solitons and fractal solitons are investigated.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Instantaneous solitons and fractal solitons for a (2+1)-dimensional nonlinear system
    潘震环
    马松华
    方建平
    [J]. Chinese Physics B, 2010, 19 (10) : 38 - 43
  • [2] Oscillating Solitons for(2+1)-Dimensional Nonlinear Models
    Naranmandula
    Tubuxin
    [J]. Communications in Theoretical Physics, 2007, 47 (02) : 282 - 286
  • [3] Oscillating solitons for (2+1)-dimensional nonlinear models
    Naranmandula
    Bao Gang
    Tubuxin
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2007, 47 (02) : 282 - 286
  • [4] Annihilation solitons and chaotic solitons for the (2+1)-dimensional breaking soliton system
    Ma Song-Hua
    Qiang Ji-Ye
    Fang Jian-Ping
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2007, 48 (04) : 662 - 666
  • [5] Study on the behavior of oscillating solitons using the (2+1)-dimensional nonlinear system
    Pang, QingLe
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (05) : 2015 - 2023
  • [6] (2+1)-Dimensional Envelope Solitons in Nonlinear Magnetic Metamaterials
    Cui Wei-Na
    Zhu Yong-Yuan
    Li Hong-Xia
    Liu Su-Mei
    [J]. CHINESE PHYSICS LETTERS, 2010, 27 (11)
  • [7] Coupled nonlinear system in (2+1) dimension and overturning solitons
    Ghosh, C
    Chowdhury, AR
    [J]. ACTA PHYSICA POLONICA A, 1996, 89 (04) : 459 - 466
  • [8] Localized solitons of a (2+1)-dimensional nonlocal nonlinear Schrodinger equation
    Maruno, Ken-ichi
    Ohta, Yasuhiro
    [J]. PHYSICS LETTERS A, 2008, 372 (24) : 4446 - 4450
  • [9] Dynamics of the optical solitons for a (2+1)-dimensional nonlinear Schrodinger equation
    Zuo, Da-Wei
    Jia, Hui-Xian
    Shan, Dong-Ming
    [J]. SUPERLATTICES AND MICROSTRUCTURES, 2017, 101 : 522 - 528
  • [10] Vector solitons for the (2+1)-dimensional coupled nonlinear Schrodinger system in the Kerr nonlinear optical fiber
    Sun, Yan
    Tian, Bo
    Qu, Qi-Xing
    Chai, Han-Peng
    Yuan, Yu-Qiang
    Shan, Wen-Rui
    Jiang, Yan
    [J]. ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2021, 101 (10):