EXPLICIT STABILIZED INTEGRATORS FOR STIFF OPTIMAL CONTROL PROBLEMS

被引:9
|
作者
Almuslimani, Ibrahim [1 ]
Vilmart, Gilles [1 ]
机构
[1] Univ Geneva, Sect Math, Case Postale 64, CH-1211 Geneva 4, Switzerland
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2021年 / 43卷 / 02期
基金
瑞士国家科学基金会;
关键词
optimal control; RKC; Chebyshev methods; geometric integration; adjoint control systems; diffusion-advection PDE; RUNGE-KUTTA METHODS; CHEBYSHEV METHODS; AUTOMATIC DIFFERENTIATION; S-ROCK; SCHEMES; DISCRETIZATION;
D O I
10.1137/19M1294216
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Explicit stabilized methods are an efficient alternative to implicit schemes for the time integration of stiff systems of differential equations in large dimension. In this paper we derive explicit stabilized integrators of orders one and two for the optimal control of stiff systems. We analyze their favorable stability properties based on the continuous optimality conditions. Furthermore, we study their order of convergence taking advantage of the symplecticity of the corresponding partitioned Runge-Kutta method involved for the adjoint equations. Numerical experiments including the optimal control of a nonlinear diffusion-advection PDE illustrate the efficiency of the new approach.
引用
收藏
页码:A721 / A743
页数:23
相关论文
共 50 条
  • [31] Algorithm of Integrating Stiff Problems Using the Explicit and Implicit Methods
    Novikov, E. A.
    [J]. IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2012, 12 (04): : 19 - 27
  • [32] WEAK SECOND ORDER EXPLICIT STABILIZED METHODS FOR STIFF STOCHASTIC DIFFERENTIAL EQUATIONS
    Abdulle, Assyr
    Vilmart, Gilles
    Zygalakis, Konstantinos C.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (04): : A1792 - A1814
  • [33] Stabilized Explicit Integrators for Local Parametrization in Multi-Rigid-Body System Dynamics
    Zhou, Ping
    Ren, Hui
    [J]. JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2022, 17 (10):
  • [34] Innovative Integrators for Computing the Optimal State in LQR Problems
    Csomos, Petra
    Mena, Hermann
    [J]. NUMERICAL ANALYSIS AND ITS APPLICATIONS (NAA 2016), 2017, 10187 : 269 - 276
  • [35] Optimal control, observers and integrators in adaptive optics
    Kulcar, Caroline
    Raynaud, Henri-Francois
    Petit, Cyril
    Conan, Jean-Marc
    de Lesegno, Patrick Viaris
    [J]. OPTICS EXPRESS, 2006, 14 (17): : 7464 - 7476
  • [36] Lifted implicit integrators for direct optimal control
    Quirynen, Rien
    Gros, Sebastien
    Diehl, Moritz
    [J]. 2015 54TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2015, : 3212 - 3217
  • [37] Discrete variational integrators and optimal control theory
    de Leon, Manuel
    Martin de Diego, David
    Santamaria-Merino, Aitor
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2007, 26 (1-3) : 251 - 268
  • [38] Discrete variational integrators and optimal control theory
    Manuel de León
    David Martín de Diego
    Aitor Santamaría-Merino
    [J]. Advances in Computational Mathematics, 2007, 26 : 251 - 268
  • [39] A Stabilized Mixed Finite Element Method for Elliptic Optimal Control Problems
    Hongfei Fu
    Hongxing Rui
    Jian Hou
    Haihong Li
    [J]. Journal of Scientific Computing, 2016, 66 : 968 - 986
  • [40] SERK2v2: A new second-order stabilized explicit Runge-Kutta method for stiff problems
    Kleefeld, B.
    Martin-Vaquero, J.
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2013, 29 (01) : 170 - 185