Lifted implicit integrators for direct optimal control

被引:0
|
作者
Quirynen, Rien [1 ,3 ]
Gros, Sebastien [2 ]
Diehl, Moritz [1 ,3 ]
机构
[1] KU Leuven Univ, Dept ESAT STADIUS, Kasteelpk Arenberg 10, B-3001 Leuven, Belgium
[2] Chalmers, Dept Signals & Syst, SE-41296 Gothenburg, Sweden
[3] Univ Freiburg, Dept IMTEK, D-79110 Freiburg, Germany
关键词
OPTIMIZATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Nonlinear Model Predictive Control (NMPC) relies on solving an Optimal Control Problem (OCP) online at every sampling time. The discretization of the continuous time dynamics requires the deployment of some numerical integration method. To that end, implicit integrators are often preferred when stiff or implicitly defined dynamics are present in the system. Implicit integration schemes, however, are typically more expensive to implement than explicit methods. This paper presents a novel lifting method for implicit integrators which improves their computational efficiency and accuracy in the context of Newton-type optimization algorithms. Similar to the standard lifted Newton, the proposed lifting method requires a marginal implementation effort. This novel approach has been implemented in the ACADO code generation software, and its efficiency illustrated using a nontrivial control example. An improved convergence and a computational speedup of about factor 2 are reported.
引用
收藏
页码:3212 / 3217
页数:6
相关论文
共 50 条
  • [1] Lifted collocation integrators for direct optimal control in ACADO toolkit
    Quirynen R.
    Gros S.
    Houska B.
    Diehl M.
    [J]. Mathematical Programming Computation, 2017, 9 (4) : 527 - 571
  • [2] Symmetric Hessian propagation for lifted collocation integrators in direct optimal control
    Quirynen, Rien
    Houska, Boris
    Diehl, Moritz
    [J]. 2016 AMERICAN CONTROL CONFERENCE (ACC), 2016, : 1117 - 1123
  • [3] Inexact Newton based Lifted Implicit Integrators for fast Nonlinear MPC
    Quirynen, Rien
    Gros, Sebastien
    Diehl, Moritz
    [J]. IFAC PAPERSONLINE, 2015, 48 (23): : 32 - 38
  • [4] The role of symplectic integrators in optimal control
    Chyba, Monique
    Hairer, Ernst
    Vilmart, Gilles
    [J]. OPTIMAL CONTROL APPLICATIONS & METHODS, 2009, 30 (04): : 367 - 382
  • [5] Optimal control using nonholonomic integrators
    Kobilarov, Marin
    Sukhatme, Gaurav
    [J]. PROCEEDINGS OF THE 2007 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1-10, 2007, : 1832 - +
  • [6] On variational integrators for optimal control of mechanical control systems
    Colombo, Leonardo
    de Diego, David Martin
    Zuccalli, Marcela
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2012, 106 (01) : 161 - 171
  • [7] On variational integrators for optimal control of mechanical control systems
    Leonardo Colombo
    David Martín de Diego
    Marcela Zuccalli
    [J]. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 2012, 106 : 161 - 171
  • [8] DIRECT OPTIMAL CONTROL FOR TIME-DELAY SYSTEMS VIA A LIFTED MULTIPLE SHOOTING ALGORITHM
    Jiang, Canghua
    Jin, Cheng
    Yu, Ming
    Xu, Zongqi
    [J]. JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2021, : 3771 - 3786
  • [9] Optimal control, observers and integrators in adaptive optics
    Kulcar, Caroline
    Raynaud, Henri-Francois
    Petit, Cyril
    Conan, Jean-Marc
    de Lesegno, Patrick Viaris
    [J]. OPTICS EXPRESS, 2006, 14 (17): : 7464 - 7476
  • [10] Discrete variational integrators and optimal control theory
    de Leon, Manuel
    Martin de Diego, David
    Santamaria-Merino, Aitor
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2007, 26 (1-3) : 251 - 268