On variational integrators for optimal control of mechanical control systems

被引:2
|
作者
Colombo, Leonardo [1 ]
de Diego, David Martin [1 ]
Zuccalli, Marcela [2 ]
机构
[1] UAM, Inst Ciencias Matemat, CSIC UAM UCM UC3M, Madrid 28049, Spain
[2] Univ Nacl de La Plata, Dept Matemat, Buenos Aires, DF, Argentina
关键词
Underactuated mechanical system; Constrained variational calculus; Optimal control; Vakonomic mechanics; Higher-order mechanics; Discrete mechanics; Variational integrators;
D O I
10.1007/s13398-011-0032-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study discrete second-order vakonomic mechanics, that is, constrained variational problems for second-order lagrangian systems. One of the main applications of the presented theory will be optimal control of underactuated mechanical control systems. We derive geometric integrators which are symplectic and preserve the momentum map. Additional, we show the applicability of the proposed theory in an example, the planar rigid body.
引用
收藏
页码:161 / 171
页数:11
相关论文
共 50 条
  • [1] On variational integrators for optimal control of mechanical control systems
    Leonardo Colombo
    David Martín de Diego
    Marcela Zuccalli
    [J]. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 2012, 106 : 161 - 171
  • [2] HIGH ORDER VARIATIONAL INTEGRATORS IN THE OPTIMAL CONTROL OF MECHANICAL SYSTEMS
    Campos, Cedric M.
    Ober-Bloebaum, Sina
    Trelat, Emmanuel
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (09): : 4193 - 4223
  • [3] Optimal Control of Mechanical Systems Based on Path-Fitted Variational Integrators
    Kong, Xinlei
    Yu, Shiyu
    Wu, Huibin
    [J]. JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2024, 19 (03):
  • [4] Discrete variational integrators and optimal control theory
    de Leon, Manuel
    Martin de Diego, David
    Santamaria-Merino, Aitor
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2007, 26 (1-3) : 251 - 268
  • [5] Discrete variational integrators and optimal control theory
    Manuel de León
    David Martín de Diego
    Aitor Santamaría-Merino
    [J]. Advances in Computational Mathematics, 2007, 26 : 251 - 268
  • [6] Geometric Integrators for Higher-Order Variational Systems and Their Application to Optimal Control
    Colombo, Leonardo
    Ferraro, Sebastian
    Martin de Diego, David
    [J]. JOURNAL OF NONLINEAR SCIENCE, 2016, 26 (06) : 1615 - 1650
  • [7] Geometric Integrators for Higher-Order Variational Systems and Their Application to Optimal Control
    Leonardo Colombo
    Sebastián Ferraro
    David Martín de Diego
    [J]. Journal of Nonlinear Science, 2016, 26 : 1615 - 1650
  • [8] Forced Variational Integrators for the Formation Control of Multiagent Systems
    Colombo, Leonardo J.
    Garcia de Marina, Hector
    [J]. IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2021, 8 (03): : 1336 - 1347
  • [9] Stochastic Optimal Control using Polynomial Chaos Variational Integrators
    Boutselis, George I.
    De La Torre, Gerardo
    Theodorou, Evangelos A.
    [J]. 2016 AMERICAN CONTROL CONFERENCE (ACC), 2016, : 6586 - 6591
  • [10] Variational discretization for optimal control problems of nonholonomic mechanical systems
    Colombo, Leonardo
    Gupta, Rohit
    Bloch, Anthony
    Martin de Diego, David
    [J]. 2015 54TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2015, : 4047 - 4052