Optimal control using nonholonomic integrators

被引:13
|
作者
Kobilarov, Marin [1 ]
Sukhatme, Gaurav [1 ]
机构
[1] Univ Southern Calif, Robot Embedded Syst Lab, Los Angeles, CA 90089 USA
关键词
D O I
10.1109/ROBOT.2007.363588
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper addresses the optimal control of nonholonomic systems through provably correct discretization of the system dynamics. The essence of the approach lies in the discretization of the Lagrange-d' Alembert principle which results in a set of forced discrete Euler-Lagrange equations and discrete nonholonomic constraints that serve as equality constraints for the optimization of a given cost functional. The method is used to investigate optimal trajectories of wheeled robots.
引用
收藏
页码:1832 / +
页数:2
相关论文
共 50 条
  • [1] Geometric integrators and nonholonomic mechanics
    de León, M
    de Diego, DM
    Santamaría-Merino, A
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2004, 45 (03) : 1042 - 1064
  • [2] Integrators for nonholonomic mechanical systems
    McLachlan, R.
    Perlmutter, M.
    [J]. JOURNAL OF NONLINEAR SCIENCE, 2006, 16 (04) : 283 - 328
  • [3] Integrators for Nonholonomic Mechanical Systems
    R. McLachlan
    M. Perlmutter
    [J]. Journal of Nonlinear Science, 2006, 16 : 283 - 328
  • [4] ENERGY CONSERVING NONHOLONOMIC INTEGRATORS
    Cortes, Jorge
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2003, : 189 - 199
  • [5] Stochastic Optimal Control using Polynomial Chaos Variational Integrators
    Boutselis, George I.
    De La Torre, Gerardo
    Theodorou, Evangelos A.
    [J]. 2016 AMERICAN CONTROL CONFERENCE (ACC), 2016, : 6586 - 6591
  • [6] The role of symplectic integrators in optimal control
    Chyba, Monique
    Hairer, Ernst
    Vilmart, Gilles
    [J]. OPTIMAL CONTROL APPLICATIONS & METHODS, 2009, 30 (04): : 367 - 382
  • [7] Optimal control for nonholonomic systems with symmetry
    Cortés, J
    Martínez, S
    [J]. PROCEEDINGS OF THE 39TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 2000, : 5216 - 5218
  • [8] Optimal control on nonholonomic black holes
    Udriste, Constantin
    [J]. JOURNAL OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING, 2013, 13 (1-2) : 271 - 278
  • [9] Variational integrators in nonholonomic and vakonomic mechanics
    Manuel de León
    Pedro L. García
    [J]. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 2012, 106 : 47 - 48
  • [10] Feedback Integrators for Nonholonomic Mechanical Systems
    Chang, Dong Eui
    Perlmutter, Matthew
    [J]. JOURNAL OF NONLINEAR SCIENCE, 2019, 29 (03) : 1165 - 1204