Feedback Integrators for Nonholonomic Mechanical Systems

被引:5
|
作者
Chang, Dong Eui [1 ]
Perlmutter, Matthew [2 ]
机构
[1] Korea Adv Inst Sci & Technol, Daejeon, South Korea
[2] Univ Fed Minas Gerais, Belo Horizonte, MG, Brazil
关键词
Structure-preserving integrator; Nonholonomic constraint; Symmetry; Feedback;
D O I
10.1007/s00332-018-9514-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The theory of feedback integrators is extended to handle mechanical systems with nonholonomic constraints with or without symmetry, so as to produce numerical integrators that preserve the nonholonomic constraints as well as other conserved quantities. To extend the feedback integrators, we develop a suitable extension theory for nonholonomic systems and also a corresponding reduction theory for systems with symmetry. It is then applied to various nonholonomic systems such as the Suslov problem on SO(3), the knife edge, the Chaplygin sleigh, the vertical rolling disk, the roller racer, the Heisenberg system, and the nonholonomic oscillator.
引用
收藏
页码:1165 / 1204
页数:40
相关论文
共 50 条
  • [1] Feedback Integrators for Nonholonomic Mechanical Systems
    Dong Eui Chang
    Matthew Perlmutter
    [J]. Journal of Nonlinear Science, 2019, 29 : 1165 - 1204
  • [2] Integrators for nonholonomic mechanical systems
    McLachlan, R.
    Perlmutter, M.
    [J]. JOURNAL OF NONLINEAR SCIENCE, 2006, 16 (04) : 283 - 328
  • [3] Integrators for Nonholonomic Mechanical Systems
    R. McLachlan
    M. Perlmutter
    [J]. Journal of Nonlinear Science, 2006, 16 : 283 - 328
  • [4] Feedback Integrators for Mechanical Systems with Holonomic Constraints
    Chang, Dong Eui
    Perlmutter, Matthew
    Vankerschaver, Joris
    [J]. SENSORS, 2022, 22 (17)
  • [5] VARIATIONAL INTEGRATORS FOR HAMILTONIZABLE NONHOLONOMIC SYSTEMS
    Fernandez, Oscar E.
    Bloch, Anthony M.
    Olver, Peter J.
    [J]. JOURNAL OF GEOMETRIC MECHANICS, 2012, 4 (02): : 137 - 163
  • [6] CONTROLLABILITY AND STATE FEEDBACK STABILIZABILITY OF NONHOLONOMIC MECHANICAL SYSTEMS
    CAMPION, G
    DANDREANOVEL, B
    BASTIN, G
    [J]. LECTURE NOTES IN CONTROL AND INFORMATION SCIENCES, 1991, 162 : 106 - 124
  • [7] Energy-Preserving Integrators Applied to Nonholonomic Systems
    Elena Celledoni
    Marta Farré Puiggalí
    Eirik Hoel Høiseth
    David Martín de Diego
    [J]. Journal of Nonlinear Science, 2019, 29 : 1523 - 1562
  • [8] Energy-Preserving Integrators Applied to Nonholonomic Systems
    Celledoni, Elena
    Puiggali, Marta Farre
    Hoiseth, Eirik Hoel
    Martin de Diego, David
    [J]. JOURNAL OF NONLINEAR SCIENCE, 2019, 29 (04) : 1523 - 1562
  • [9] Geometric integrators and nonholonomic mechanics
    de León, M
    de Diego, DM
    Santamaría-Merino, A
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2004, 45 (03) : 1042 - 1064
  • [10] ENERGY CONSERVING NONHOLONOMIC INTEGRATORS
    Cortes, Jorge
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2003, : 189 - 199