Optimal control using nonholonomic integrators

被引:13
|
作者
Kobilarov, Marin [1 ]
Sukhatme, Gaurav [1 ]
机构
[1] Univ Southern Calif, Robot Embedded Syst Lab, Los Angeles, CA 90089 USA
关键词
D O I
10.1109/ROBOT.2007.363588
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper addresses the optimal control of nonholonomic systems through provably correct discretization of the system dynamics. The essence of the approach lies in the discretization of the Lagrange-d' Alembert principle which results in a set of forced discrete Euler-Lagrange equations and discrete nonholonomic constraints that serve as equality constraints for the optimization of a given cost functional. The method is used to investigate optimal trajectories of wheeled robots.
引用
收藏
页码:1832 / +
页数:2
相关论文
共 50 条
  • [21] Discrete variational integrators and optimal control theory
    Manuel de León
    David Martín de Diego
    Aitor Santamaría-Merino
    [J]. Advances in Computational Mathematics, 2007, 26 : 251 - 268
  • [22] Discrete variational integrators and optimal control theory
    de Leon, Manuel
    Martin de Diego, David
    Santamaria-Merino, Aitor
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2007, 26 (1-3) : 251 - 268
  • [23] Optimal control of underactuated nonholonomic mechanical systems
    Hussein, I.
    Bloch, A.
    [J]. 2006 AMERICAN CONTROL CONFERENCE, VOLS 1-12, 2006, 1-12 : 495 - +
  • [24] Momentum and energy preserving integrators for nonholonomic dynamics
    Ferraro, S.
    Iglesias, D.
    de Diego, D. Martin
    [J]. NONLINEARITY, 2008, 21 (08) : 1911 - 1928
  • [25] Optimal tracking control of a nonholonomic mobile robot
    Park, KH
    Cho, SB
    Lee, YW
    [J]. ISIE 2001: IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS PROCEEDINGS, VOLS I-III, 2001, : 2073 - 2076
  • [26] Optimal control of underactuated nonholonomic mechanical systems
    Hussein, Islam I.
    Bloch, Anthony M.
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2008, 53 (03) : 668 - 682
  • [27] Kinematic nonholonomic optimal control: The skate example
    Akileswar, S
    Baillieul, J
    [J]. PROCEEDINGS OF THE 36TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 1997, : 3054 - 3060
  • [28] Stabilization and optimal control of nonholonomic mobile robot
    Li, S
    Ma, GL
    Hu, WL
    [J]. 2004 8TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION, VOLS 1-3, 2004, : 1427 - 1430
  • [29] ADAPTIVE OPTIMAL DYNAMIC CONTROL FOR NONHOLONOMIC SYSTEMS
    Tar, Jozsef K.
    Rudas, Imre J.
    [J]. COMPUTING AND INFORMATICS, 2009, 28 (03) : 339 - 351
  • [30] Maximum load determination of nonholonomic mobile manipulator using hierarchical optimal control
    Korayem, M. H.
    Azimirad, V.
    Vatanjou, H.
    Korayem, A. H.
    [J]. ROBOTICA, 2012, 30 : 53 - 65