Innovative Integrators for Computing the Optimal State in LQR Problems

被引:0
|
作者
Csomos, Petra [1 ,2 ]
Mena, Hermann [3 ,4 ]
机构
[1] Eotvos Lorand Univ, Pazmany Peter St 1-C, H-1117 Budapest, Hungary
[2] MTA ELTE Numer Anal & Large Networks Res Grp, Pazmany Peter St 1-C, H-1117 Budapest, Hungary
[3] Univ Innsbruck, Dept Math, Innsbruck, Austria
[4] Yachay Tech, Sch Math Sci & Informat Technol, Urcuqui, Ecuador
关键词
Abstract LQR problems; Optimal control; Operator splitting procedures; Exponential integrators; Convergence analysis; EXPONENTIAL INTEGRATORS;
D O I
10.1007/978-3-319-57099-0_28
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider the numerical approximation of linear quadratic optimal control problems for partial differential equations where the dynamics is driven by a strongly continuous semigroup. For this problems, the optimal control is given in feedback form, i.e., it relies on solving the associated Riccati equation and the optimal state. We propose innovative integrators for solving the optimal state based on operator splitting procedures and exponential integrators and prove their convergence. We illustrate the performance of our approach in numerical experiments.
引用
收藏
页码:269 / 276
页数:8
相关论文
共 50 条
  • [1] COMPUTING INTEGRATORS
    MONTOYA, EF
    [J]. JOURNAL OF CHEMICAL EDUCATION, 1985, 62 (08) : A212 - &
  • [2] EXPLICIT STABILIZED INTEGRATORS FOR STIFF OPTIMAL CONTROL PROBLEMS
    Almuslimani, Ibrahim
    Vilmart, Gilles
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (02): : A721 - A743
  • [3] Symplectic Mobius integrators for LQ optimal control problems
    Frank, Jason
    Zhuk, Sergiy
    [J]. 2014 IEEE 53RD ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2014, : 6377 - 6382
  • [4] Optimal saturated feedback laws for LQR problems with bounded controls
    Vicente Costanza
    Pablo S. Rivadeneira
    [J]. Computational and Applied Mathematics, 2013, 32 : 355 - 371
  • [5] Optimal saturated feedback laws for LQR problems with bounded controls
    Costanza, Vicente
    Rivadeneira, Pablo S.
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2013, 32 (02): : 355 - 371
  • [6] Presymplectic Integrators for Optimal Control Problems via Retraction Maps
    Barbero Linan, Maria
    Martin de Diego, David
    [J]. CONTROLO 2022, 2022, 930 : 735 - 745
  • [7] On infinite horizon switched LQR problems with state and control constraints
    Balandat, Maximilian
    Zhang, Wei
    Abate, Alessandro
    [J]. SYSTEMS & CONTROL LETTERS, 2012, 61 (04) : 464 - 471
  • [8] A hamiltonian pertubation approach to construction of geometric integrators for optimal control problems
    Aliyu M.D.S.
    [J]. International Journal of Applied and Computational Mathematics, 2019, 5 (3)
  • [9] THE LQR OPTIMAL CONTROL PROBLEMS EXPLORATION OF TICKETING SYSTEM ONLINE BASED ON MATLAB
    Sun, Hao
    Gai, Ru Dong
    [J]. 4TH INTERNATIONAL CONFERENCE ON SOFTWARE TECHNOLOGY AND ENGINEERING (ICSTE 2012), 2012, : 445 - 448
  • [10] DNA computing approach to optimal decision problems
    Watada, J
    Kojima, S
    Ueda, S
    Ono, O
    [J]. 2004 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-3, PROCEEDINGS, 2004, : 1579 - 1584