EXPLICIT STABILIZED INTEGRATORS FOR STIFF OPTIMAL CONTROL PROBLEMS

被引:9
|
作者
Almuslimani, Ibrahim [1 ]
Vilmart, Gilles [1 ]
机构
[1] Univ Geneva, Sect Math, Case Postale 64, CH-1211 Geneva 4, Switzerland
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2021年 / 43卷 / 02期
基金
瑞士国家科学基金会;
关键词
optimal control; RKC; Chebyshev methods; geometric integration; adjoint control systems; diffusion-advection PDE; RUNGE-KUTTA METHODS; CHEBYSHEV METHODS; AUTOMATIC DIFFERENTIATION; S-ROCK; SCHEMES; DISCRETIZATION;
D O I
10.1137/19M1294216
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Explicit stabilized methods are an efficient alternative to implicit schemes for the time integration of stiff systems of differential equations in large dimension. In this paper we derive explicit stabilized integrators of orders one and two for the optimal control of stiff systems. We analyze their favorable stability properties based on the continuous optimality conditions. Furthermore, we study their order of convergence taking advantage of the symplecticity of the corresponding partitioned Runge-Kutta method involved for the adjoint equations. Numerical experiments including the optimal control of a nonlinear diffusion-advection PDE illustrate the efficiency of the new approach.
引用
收藏
页码:A721 / A743
页数:23
相关论文
共 50 条
  • [1] Explicit Stabilized Integration of Stiff Determinisitic or Stochastic Problems
    Abdulle, Assyr
    [J]. NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2012), VOLS A AND B, 2012, 1479 : 11 - 15
  • [2] Stabilized explicit peer methods with parallelism across the stages for stiff problems
    Pagano, Giovanni
    [J]. APPLIED NUMERICAL MATHEMATICS, 2025, 207 : 156 - 173
  • [3] Exponential Integrators for Stiff Elastodynamic Problems
    Michels, Dominik L.
    Sobottka, Gerrit A.
    Weber, Andreas G.
    [J]. ACM TRANSACTIONS ON GRAPHICS, 2014, 33 (01):
  • [4] Symplectic Mobius integrators for LQ optimal control problems
    Frank, Jason
    Zhuk, Sergiy
    [J]. 2014 IEEE 53RD ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2014, : 6377 - 6382
  • [5] An explicit method for optimal control problems
    Kesri, M'hamed
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (15) : 8213 - 8221
  • [6] Second-order stabilized explicit Runge-Kutta methods for stiff problems
    Martin-Vaquero, J.
    Janssen, B.
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2009, 180 (10) : 1802 - 1810
  • [7] Comparative performance of exponential, implicit, and explicit integrators for stiff systems of ODEs
    Loffeld, J.
    Tokman, M.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 241 : 45 - 67
  • [8] Optimal Explicit Stabilized Integrator of Weak Order 1 for Stiff and Ergodic Stochastic Differential Equations
    Abdulle, Assyr
    Almuslimani, Ibrahim
    Vilmart, Gilles
    [J]. SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2018, 6 (02): : 937 - 964
  • [9] Presymplectic Integrators for Optimal Control Problems via Retraction Maps
    Barbero Linan, Maria
    Martin de Diego, David
    [J]. CONTROLO 2022, 2022, 930 : 735 - 745
  • [10] EXPLICIT STABILIZED MULTIRATE METHOD FOR STIFF DIFFERENTIAL EQUATIONS
    Abdulle, Assyr
    Grote, Marcus J.
    De Souza, Giacomo Rosilho
    [J]. MATHEMATICS OF COMPUTATION, 2022, 91 (338) : 2681 - 2714