EXPLICIT STABILIZED INTEGRATORS FOR STIFF OPTIMAL CONTROL PROBLEMS

被引:9
|
作者
Almuslimani, Ibrahim [1 ]
Vilmart, Gilles [1 ]
机构
[1] Univ Geneva, Sect Math, Case Postale 64, CH-1211 Geneva 4, Switzerland
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2021年 / 43卷 / 02期
基金
瑞士国家科学基金会;
关键词
optimal control; RKC; Chebyshev methods; geometric integration; adjoint control systems; diffusion-advection PDE; RUNGE-KUTTA METHODS; CHEBYSHEV METHODS; AUTOMATIC DIFFERENTIATION; S-ROCK; SCHEMES; DISCRETIZATION;
D O I
10.1137/19M1294216
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Explicit stabilized methods are an efficient alternative to implicit schemes for the time integration of stiff systems of differential equations in large dimension. In this paper we derive explicit stabilized integrators of orders one and two for the optimal control of stiff systems. We analyze their favorable stability properties based on the continuous optimality conditions. Furthermore, we study their order of convergence taking advantage of the symplecticity of the corresponding partitioned Runge-Kutta method involved for the adjoint equations. Numerical experiments including the optimal control of a nonlinear diffusion-advection PDE illustrate the efficiency of the new approach.
引用
收藏
页码:A721 / A743
页数:23
相关论文
共 50 条
  • [11] A hamiltonian pertubation approach to construction of geometric integrators for optimal control problems
    Aliyu M.D.S.
    [J]. International Journal of Applied and Computational Mathematics, 2019, 5 (3)
  • [12] Explicit Methods for Integrating Stiff Cauchy Problems
    Belov, A. A.
    Kalitkin, N. N.
    Bulatov, P. E.
    Zholkovskii, E. K.
    [J]. DOKLADY MATHEMATICS, 2019, 99 (02) : 230 - 234
  • [13] Explicit Methods for Integrating Stiff Cauchy Problems
    A. A. Belov
    N. N. Kalitkin
    P. E. Bulatov
    E. K. Zholkovskii
    [J]. Doklady Mathematics, 2019, 99 : 230 - 234
  • [14] A class of explicit multistep exponential integrators for semilinear problems
    M. P. Calvo
    C. Palencia
    [J]. Numerische Mathematik, 2006, 102 : 367 - 381
  • [15] An explicit solution to a class of constrained optimal control problems
    Zhang, Huan
    Dower, Peter M.
    [J]. 2012 2ND AUSTRALIAN CONTROL CONFERENCE (AUCC), 2012, : 156 - 161
  • [16] Explicit Solutions to Separable Problems in Optimal Cooperative Control
    Kim, Jong-Han
    Lall, Sanjay
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2015, 60 (05) : 1304 - 1319
  • [17] EXPLICIT STABILIZED MULTIRATE METHOD FOR STIFF STOCHASTIC DIFFERENTIAL EQUATIONS
    Abdulle, Assyr
    de Souza, Giacomo Rosilho
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2022, 44 (04): : A1859 - A1883
  • [18] A class of explicit multistep exponential integrators for semilinear problems
    Calvo, MP
    Palencia, C
    [J]. NUMERISCHE MATHEMATIK, 2006, 102 (03) : 367 - 381
  • [19] Convergence analysis of explicit stabilized integrators for parabolic semilinear stochastic PDEs
    Abdulle, Assyr
    Brehier, Charles-Edouard
    Vilmart, Gilles
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2023, 43 (01) : 258 - 292
  • [20] An explicit one-step method for stiff problems
    Novati, P
    [J]. COMPUTING, 2003, 71 (02) : 133 - 151