Presymplectic Integrators for Optimal Control Problems via Retraction Maps

被引:0
|
作者
Barbero Linan, Maria [1 ]
Martin de Diego, David [2 ]
机构
[1] Univ Politecn Madrid, Dept Matemat Aplicada, Av Juan de Herrera 4, Madrid 28040, Spain
[2] Inst Ciencias Matemat CSIC UAM UC3M UCM, C Nicolas Cabrera 13-15, Madrid 28049, Spain
来源
CONTROLO 2022 | 2022年 / 930卷
关键词
Retraction maps; Geometric integrators; Presymplectic methods; Optimal control problems; DISCRETE MECHANICS; MANIFOLDS;
D O I
10.1007/978-3-031-10047-5_65
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Pontryagin's Maximum Principle provides an optimal control problem with a Hamiltonian formulation. A discretization of a presymplectic manifold associated with the problem is obtained by using the notion of retraction map. As a result, numerical integrators that preserve the presymplectic structure, a closed degenerate 2-form, are obtained to solve the problem.
引用
收藏
页码:735 / 745
页数:11
相关论文
共 50 条
  • [1] Retraction Maps: A Seed of Geometric Integrators
    Barbero-Linan, Maria
    Martin de Diego, David
    [J]. FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2023, 23 (04) : 1335 - 1380
  • [2] Retraction Maps: A Seed of Geometric Integrators
    María Barbero-Liñán
    David Martín de Diego
    [J]. Foundations of Computational Mathematics, 2023, 23 : 1335 - 1380
  • [3] Symplectic Mobius integrators for LQ optimal control problems
    Frank, Jason
    Zhuk, Sergiy
    [J]. 2014 IEEE 53RD ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2014, : 6377 - 6382
  • [4] EXPLICIT STABILIZED INTEGRATORS FOR STIFF OPTIMAL CONTROL PROBLEMS
    Almuslimani, Ibrahim
    Vilmart, Gilles
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (02): : A721 - A743
  • [5] A hamiltonian pertubation approach to construction of geometric integrators for optimal control problems
    Aliyu M.D.S.
    [J]. International Journal of Applied and Computational Mathematics, 2019, 5 (3)
  • [6] The role of symplectic integrators in optimal control
    Chyba, Monique
    Hairer, Ernst
    Vilmart, Gilles
    [J]. OPTIMAL CONTROL APPLICATIONS & METHODS, 2009, 30 (04): : 367 - 382
  • [7] Optimal control using nonholonomic integrators
    Kobilarov, Marin
    Sukhatme, Gaurav
    [J]. PROCEEDINGS OF THE 2007 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1-10, 2007, : 1832 - +
  • [8] On variational integrators for optimal control of mechanical control systems
    Colombo, Leonardo
    de Diego, David Martin
    Zuccalli, Marcela
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2012, 106 (01) : 161 - 171
  • [9] On variational integrators for optimal control of mechanical control systems
    Leonardo Colombo
    David Martín de Diego
    Marcela Zuccalli
    [J]. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 2012, 106 : 161 - 171
  • [10] Innovative Integrators for Computing the Optimal State in LQR Problems
    Csomos, Petra
    Mena, Hermann
    [J]. NUMERICAL ANALYSIS AND ITS APPLICATIONS (NAA 2016), 2017, 10187 : 269 - 276