Error estimates of finite volume method for Stokes optimal control problem

被引:2
|
作者
Lan, Lin [1 ]
Chen, Ri-hui [1 ]
Wang, Xiao-dong [1 ]
Ma, Chen-xia [1 ]
Fu, Hao-nan [1 ]
机构
[1] Kunming Univ Sci & Technol, Fac Land Resources Engn, Kunming 650093, Yunnan, Peoples R China
关键词
Optimal control problem; Stokes equations; Finite volume method; A priori error estimates; Variational discretization; 49J20; 65N30; UNIFIED ANALYSIS; ELEMENT METHODS; APPROXIMATION; OPTIMIZATION;
D O I
10.1186/s13660-020-02532-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we discuss a priori error estimates for the finite volume element approximation of optimal control problem governed by Stokes equations. Under some reasonable assumptions, we obtain optimal L2-norm error estimates. The approximate orders for the state, costate, and control variables are O(h2) in the sense of L2-norm. Furthermore, we derive H1-norm error estimates for the state and costate variables. Finally, we give some conclusions and future works.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] A Posteriori Error Estimates for the Virtual Element Method for the Stokes Problem
    Gang Wang
    Ying Wang
    Yinnian He
    [J]. Journal of Scientific Computing, 2020, 84
  • [32] A posteriori error estimates of spectral method for nonlinear parabolic optimal control problem
    Li, Lin
    Lu, Zuliang
    Zhang, Wei
    Huang, Fei
    Yang, Yin
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [33] A posteriori error estimates of spectral method for nonlinear parabolic optimal control problem
    Lin Li
    Zuliang Lu
    Wei Zhang
    Fei Huang
    Yin Yang
    [J]. Journal of Inequalities and Applications, 2018
  • [34] Analysis of a finite volume element method for the Stokes problem
    Alfio Quarteroni
    Ricardo Ruiz-Baier
    [J]. Numerische Mathematik, 2011, 118 : 737 - 764
  • [35] Analysis of a finite volume element method for the Stokes problem
    Quarteroni, Alfio
    Ruiz-Baier, Ricardo
    [J]. NUMERISCHE MATHEMATIK, 2011, 118 (04) : 737 - 764
  • [36] An optimal adaptive finite element method for the Stokes problem
    Kondratyuk, Yaroslav
    Stevenson, Rob
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (02) : 747 - 775
  • [37] The Optimal Error Estimate of the Fully Discrete Locally Stabilized Finite Volume Method for the Non-Stationary Navier-Stokes Problem
    He, Guoliang
    Zhang, Yong
    [J]. ENTROPY, 2022, 24 (06)
  • [38] Error Estimates for the Heterogeneous Multiscale Finite Volume Method of Convection-Diffusion-Reaction Problem
    Yu, Tao
    Ouyang, Peichang
    Cao, Haitao
    [J]. COMPLEXITY, 2018,
  • [39] Error estimates and superconvergence of a mixed finite element method for elliptic optimal control problems
    Hou, Tianliang
    Liu, Chunmei
    Yang, Yin
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (04) : 714 - 726
  • [40] POINTWISE ERROR ESTIMATES OF FINITE ELEMENT APPROXIMATIONS TO THE STOKES PROBLEM ON CONVEX POLYHEDRA
    Guzman, J.
    Leykekhman, D.
    [J]. MATHEMATICS OF COMPUTATION, 2012, 81 (280) : 1879 - 1902