Error estimates and superconvergence of a mixed finite element method for elliptic optimal control problems

被引:15
|
作者
Hou, Tianliang [1 ]
Liu, Chunmei [2 ]
Yang, Yin [3 ]
机构
[1] Beihua Univ, Sch Math & Stat, Jilin 132013, Jilin, Peoples R China
[2] Hunan Univ Sci & Engn, Dept Math & Computat Sci, Inst Computat Math, Yongzhou 425100, Hunan, Peoples R China
[3] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Elliptic equations; Optimal control problems; Error estimate; Superconvergence; Mixed finite element methods; APPROXIMATION; EQUATIONS;
D O I
10.1016/j.camwa.2017.05.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate error estimates and superconvergence of a mixed finite element method for elliptic optimal control problems. The gradient for our method belongs to the square integrable space instead of the classical H(div; Omega) space. The state and co state are approximated by the P-0(2)-P-1 (velocity-pressure) pair arid the control variable is approximated by piecewise constant functions. First, we derive a priori error estimates in H-1-norm for the state and the co-state scalar functions, a priori error estimates in (L-2)(2) norm for the state and the co-state vector functions and a priori error estimates in L-2-norm for the control function. Then, using postprocessing projection operator, We derive a superconvergence result for the control variable. Next, we get a priori error estimates in L-2-norm for the state and the co-state scalar functions. Finally, a numerical example is given to demonstrate the theoretical results. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:714 / 726
页数:13
相关论文
共 50 条