A posteriori error estimates of spectral method for nonlinear parabolic optimal control problem

被引:2
|
作者
Li, Lin [1 ]
Lu, Zuliang [1 ,2 ,3 ]
Zhang, Wei [4 ]
Huang, Fei [1 ]
Yang, Yin [5 ,6 ]
机构
[1] Chongqing Three Gorges Univ, Key Lab Nonlinear Sci & Syst Struct, Chongqing, Peoples R China
[2] Chongqing Three Gorges Univ, Key Lab Intelligent Informat Proc & Control, Chongqing, Peoples R China
[3] Tianjin Univ Finance & Econ, Res Ctr Math & Econ, Tianjin, Peoples R China
[4] Chongqing Three Gorges Univ, Chongqing Municipal Inst Higher Educ, Key Lab Intelligent Informat Proc & Control, Chongqing, Peoples R China
[5] Xiangtan Univ, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan, Peoples R China
[6] Xiangtan Univ, Minist Educ, Key Lab Intelligent Comp & Informat Proc, Xiangtan, Peoples R China
基金
美国国家科学基金会; 中国博士后科学基金;
关键词
Optimal control problem; Nonlinear parabolic equations; Variational discretization; Spectral method; A posteriori error estimates; FINITE-ELEMENT METHODS; ELLIPTIC-EQUATIONS; APPROXIMATION;
D O I
10.1186/s13660-018-1729-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the spectral approximation of optimal control problem governed by nonlinear parabolic equations. A spectral approximation scheme for the nonlinear parabolic optimal control problem is presented. We construct a fully discrete spectral approximation scheme by using the backward Euler scheme in time. Moreover, by using an orthogonal projection operator, we obtain L-2(H-1)-L-2 (L-2) a posteriori error estimates of the approximation solutions for both the state and the control. Finally, by introducing two auxiliary equations, we also obtain L-2(L-2)-L-2(L-2) a posteriori error estimates of the approximation solutions for both the state and the control.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] A posteriori error estimates of spectral method for nonlinear parabolic optimal control problem
    Lin Li
    Zuliang Lu
    Wei Zhang
    Fei Huang
    Yin Yang
    Journal of Inequalities and Applications, 2018
  • [2] A posteriori error estimates of spectral method for optimal control problems governed by parabolic equations
    Chen YanPing
    Huang YunQing
    Yi NianYu
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2008, 51 (08): : 1376 - 1390
  • [3] A posteriori error estimates of spectral method for optimal control problems governed by parabolic equations
    YanPing Chen
    YunQing Huang
    NianYu Yi
    Science in China Series A: Mathematics, 2008, 51 : 1376 - 1390
  • [4] A posteriori error estimates of hp spectral element method for parabolic optimal control problems
    Lu, Zuliang
    Cai, Fei
    Xu, Ruixiang
    Hou, Chunjuan
    Wu, Xiankui
    Yang, Yin
    AIMS MATHEMATICS, 2022, 7 (04): : 5220 - 5240
  • [6] EQUIVALENT A POSTERIORI ERROR ESTIMATES FOR A CONSTRAINED OPTIMAL CONTROL PROBLEM GOVERNED BY PARABOLIC EQUATIONS
    Sun, Tongjun
    Ge, Liang
    Liu, Wenbin
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2013, 10 (01) : 1 - 23
  • [7] A Posteriori Error Estimates for Boundary Parabolic Optimal Control Problems
    Lu, Z.
    Liu, D.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2014, 35 (02) : 92 - 105
  • [8] A POSTERIORI ERROR ESTIMATES OF THE DISCONTINUOUS GALERKIN METHOD FOR PARABOLIC PROBLEM
    Sebestova, Ivana
    Dolejsi, Vit
    PROGRAMS AND ALGORITHMS OF NUMERICAL MATHEMATICS 15, 2010, : 158 - 163
  • [9] A priori and a posteriori error estimates for the method of lumped masses for parabolic optimal control problems
    Fu, Hongfei
    Rui, Hongxing
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2011, 88 (13) : 2798 - 2823
  • [10] A posteriori error estimates for optimal control problems governed by parabolic equations
    Wenbin Liu
    Ningning Yan
    Numerische Mathematik, 2003, 93 : 497 - 521