A posteriori error estimates of spectral method for nonlinear parabolic optimal control problem

被引:2
|
作者
Li, Lin [1 ]
Lu, Zuliang [1 ,2 ,3 ]
Zhang, Wei [4 ]
Huang, Fei [1 ]
Yang, Yin [5 ,6 ]
机构
[1] Chongqing Three Gorges Univ, Key Lab Nonlinear Sci & Syst Struct, Chongqing, Peoples R China
[2] Chongqing Three Gorges Univ, Key Lab Intelligent Informat Proc & Control, Chongqing, Peoples R China
[3] Tianjin Univ Finance & Econ, Res Ctr Math & Econ, Tianjin, Peoples R China
[4] Chongqing Three Gorges Univ, Chongqing Municipal Inst Higher Educ, Key Lab Intelligent Informat Proc & Control, Chongqing, Peoples R China
[5] Xiangtan Univ, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan, Peoples R China
[6] Xiangtan Univ, Minist Educ, Key Lab Intelligent Comp & Informat Proc, Xiangtan, Peoples R China
基金
美国国家科学基金会; 中国博士后科学基金;
关键词
Optimal control problem; Nonlinear parabolic equations; Variational discretization; Spectral method; A posteriori error estimates; FINITE-ELEMENT METHODS; ELLIPTIC-EQUATIONS; APPROXIMATION;
D O I
10.1186/s13660-018-1729-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the spectral approximation of optimal control problem governed by nonlinear parabolic equations. A spectral approximation scheme for the nonlinear parabolic optimal control problem is presented. We construct a fully discrete spectral approximation scheme by using the backward Euler scheme in time. Moreover, by using an orthogonal projection operator, we obtain L-2(H-1)-L-2 (L-2) a posteriori error estimates of the approximation solutions for both the state and the control. Finally, by introducing two auxiliary equations, we also obtain L-2(L-2)-L-2(L-2) a posteriori error estimates of the approximation solutions for both the state and the control.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] Sharp A Posteriori Error Estimates for Optimal Control Governed by Parabolic Integro-Differential Equations
    Wanfang Shen
    Liang Ge
    Danping Yang
    Wenbin Liu
    Journal of Scientific Computing, 2015, 65 : 1 - 33
  • [42] A Posteriori Error Estimates of Semidiscrete Mixed Finite Element Methods for Parabolic Optimal Control Problems
    Chen, Yanping
    Lin, Zhuoqing
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2015, 5 (01) : 85 - 108
  • [43] Sharp A Posteriori Error Estimates for Optimal Control Governed by Parabolic Integro-Differential Equations
    Shen, Wanfang
    Ge, Liang
    Yang, Danping
    Liu, Wenbin
    JOURNAL OF SCIENTIFIC COMPUTING, 2015, 65 (01) : 1 - 33
  • [44] A Posteriori Error Estimates of Mixed Methods for Quadratic Optimal Control Problems Governed by Parabolic Equations
    Hou, Tianliang
    Chen, Yanping
    Huang, Yunqing
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2011, 4 (04) : 439 - 458
  • [45] A posteriori error estimates for discontinuous Galerkin time-stepping method for optimal control problems governed by parabolic equations
    Liu, WB
    Ma, HP
    Tang, T
    Yan, NN
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2004, 42 (03) : 1032 - 1061
  • [46] A posteriori error estimates of spectral method for the fractional optimal control problems with non-homogeneous initial conditions
    Ye, Xingyang
    Xu, Chuanju
    AIMS MATHEMATICS, 2021, 6 (11): : 12028 - 12050
  • [47] A posteriori error estimates and adaptivity for the IMEX BDF2 method for nonlinear parabolic equations
    Yang, Shuo
    Tian, Liutao
    Tian, Hongjiong
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2025, 457
  • [48] A posteriori error estimates for the fractional optimal control problems
    Ye, Xingyang
    Xu, Chuanju
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015, : 1 - 13
  • [49] A posteriori error estimates for the fractional optimal control problems
    Xingyang Ye
    Chuanju Xu
    Journal of Inequalities and Applications, 2015
  • [50] A posteriori error estimates for semilinear optimal control problems
    Allendes, Alejandro
    Fuica, Francisco
    Otarola, Enrique
    Quero, Daniel
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2021, 55 (05) : 2293 - 2322