A posteriori error estimates of spectral method for the fractional optimal control problems with non-homogeneous initial conditions

被引:4
|
作者
Ye, Xingyang [1 ]
Xu, Chuanju [2 ,3 ]
机构
[1] Jimei Univ, Sch Sci, Xiamen 361021, Peoples R China
[2] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
[3] Xiamen Univ, Fujian Prov Key Lab Math Modeling & High Performa, Xiamen 361005, Peoples R China
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 11期
关键词
fractional optimal control problem; initial conditions; spectral method; a posteriori error; DIFFUSION EQUATION; APPROXIMATION;
D O I
10.3934/math.2021697
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider an optimal control problem governed by a space-time fractional diffusion equation with non-homogeneous initial conditions. A spectral method is proposed to discretize the problem in both time and space directions. The contribution of the paper is threefold: (1) A discussion and better understanding of the initial conditions for fractional differential equations with Riemann-Liouville and Caputo derivatives are presented. (2) A posteriori error estimates are obtained for both the state and the control approximations. (3) Numerical experiments are performed to verify that the obtained a posteriori error estimates are reliable.
引用
收藏
页码:12028 / 12050
页数:23
相关论文
共 50 条
  • [1] A posteriori error estimates for the fractional optimal control problems
    Ye, Xingyang
    Xu, Chuanju
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015, : 1 - 13
  • [2] A posteriori error estimates for the fractional optimal control problems
    Xingyang Ye
    Chuanju Xu
    [J]. Journal of Inequalities and Applications, 2015
  • [3] A posteriori error estimates of spectral method for optimal control problems governed by parabolic equations
    Chen YanPing
    Huang YunQing
    Yi NianYu
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS, 2008, 51 (08): : 1376 - 1390
  • [4] A posteriori error estimates of spectral method for optimal control problems governed by parabolic equations
    YanPing Chen
    YunQing Huang
    NianYu Yi
    [J]. Science in China Series A: Mathematics, 2008, 51 : 1376 - 1390
  • [6] A posteriori error estimates of hp spectral element method for parabolic optimal control problems
    Lu, Zuliang
    Cai, Fei
    Xu, Ruixiang
    Hou, Chunjuan
    Wu, Xiankui
    Yang, Yin
    [J]. AIMS MATHEMATICS, 2022, 7 (04): : 5220 - 5240
  • [7] A posteriori error estimates for semilinear optimal control problems
    Allendes, Alejandro
    Fuica, Francisco
    Otarola, Enrique
    Quero, Daniel
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2021, 55 (05) : 2293 - 2322
  • [8] A posteriori error estimates of spectral method for nonlinear parabolic optimal control problem
    Li, Lin
    Lu, Zuliang
    Zhang, Wei
    Huang, Fei
    Yang, Yin
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [9] A posteriori error estimates of spectral method for nonlinear parabolic optimal control problem
    Lin Li
    Zuliang Lu
    Wei Zhang
    Fei Huang
    Yin Yang
    [J]. Journal of Inequalities and Applications, 2018
  • [10] A Posteriori Error Estimates for Boundary Parabolic Optimal Control Problems
    Lu, Z.
    Liu, D.
    [J]. LOBACHEVSKII JOURNAL OF MATHEMATICS, 2014, 35 (02) : 92 - 105