A posteriori error estimates of spectral method for optimal control problems governed by parabolic equations

被引:0
|
作者
YanPing Chen
YunQing Huang
NianYu Yi
机构
[1] South China Normal University,School of Mathematical Sciences
[2] Xiangtan University,Hunan Key Laboratory for Computation and Simulation in Science and Engineering, School of Mathematics and Computational Science
来源
关键词
Legendre Galerkin spectral method; optimal control problems; parabolic state equations; a posteriori error estimates; 49J20; 65M60; 65M70;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate the Legendre Galerkin spectral approximation of quadratic optimal control problems governed by parabolic equations. A spectral approximation scheme for the parabolic optimal control problem is presented. We obtain a posteriori error estimates of the approximated solutions for both the state and the control.
引用
收藏
页码:1376 / 1390
页数:14
相关论文
共 50 条
  • [2] A posteriori error estimates of spectral method for optimal control problems governed by parabolic equations
    Chen YanPing
    Huang YunQing
    Yi NianYu
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS, 2008, 51 (08): : 1376 - 1390
  • [3] A posteriori error estimates for optimal control problems governed by parabolic equations
    Wenbin Liu
    Ningning Yan
    [J]. Numerische Mathematik, 2003, 93 : 497 - 521
  • [4] A posteriori error estimates for optimal control problems governed by parabolic equations
    Liu, WB
    Yan, NN
    [J]. NUMERISCHE MATHEMATIK, 2003, 93 (03) : 497 - 521
  • [5] A Posteriori Error Estimates of Mixed Methods for Quadratic Optimal Control Problems Governed by Parabolic Equations
    Hou, Tianliang
    Chen, Yanping
    Huang, Yunqing
    [J]. NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2011, 4 (04) : 439 - 458
  • [6] A posteriori error estimates for discontinuous Galerkin time-stepping method for optimal control problems governed by parabolic equations
    Liu, WB
    Ma, HP
    Tang, T
    Yan, NN
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2004, 42 (03) : 1032 - 1061
  • [7] A New A Posteriori Error Estimates for Optimal Control Problems Governed by Parabolic Integro-Differential Equations
    H. Chen
    T. Hou
    [J]. Numerical Analysis and Applications, 2024, 17 : 67 - 79
  • [8] A New A Posteriori Error Estimates for Optimal Control Problems Governed by Parabolic Integro-Differential Equations
    Chen, H.
    Hou, T.
    [J]. NUMERICAL ANALYSIS AND APPLICATIONS, 2024, 17 (01) : 67 - 79
  • [9] A posteriori error estimates of hp spectral element method for parabolic optimal control problems
    Lu, Zuliang
    Cai, Fei
    Xu, Ruixiang
    Hou, Chunjuan
    Wu, Xiankui
    Yang, Yin
    [J]. AIMS MATHEMATICS, 2022, 7 (04): : 5220 - 5240
  • [10] EQUIVALENT A POSTERIORI ERROR ESTIMATES FOR A CONSTRAINED OPTIMAL CONTROL PROBLEM GOVERNED BY PARABOLIC EQUATIONS
    Sun, Tongjun
    Ge, Liang
    Liu, Wenbin
    [J]. INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2013, 10 (01) : 1 - 23