A posteriori error estimates of hp spectral element method for parabolic optimal control problems

被引:0
|
作者
Lu, Zuliang [1 ,2 ]
Cai, Fei [3 ]
Xu, Ruixiang [3 ]
Hou, Chunjuan [4 ]
Wu, Xiankui [3 ]
Yang, Yin [5 ]
机构
[1] Chongqing Three Gorges Univ, Key Lab Nonlinear Sci & Syst Struct, Key Lab Intelligent Informat Proc & Control, Chongqing 404000, Peoples R China
[2] Tianjin Univ Finance & Econ, Res Ctr Math & Econ, Tianjin 300222, Peoples R China
[3] Chongqing Three Gorges Univ, Key Lab Nonlinear Sci & Syst Struct, Chongqing 404000, Peoples R China
[4] Guangzhou Huashang Coll, Guangzhou 511300, Peoples R China
[5] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China
来源
AIMS MATHEMATICS | 2022年 / 7卷 / 04期
基金
中国博士后科学基金; 美国国家科学基金会;
关键词
parabolic optimal control problems; hp spectral element method; a posteriori error estimates; MIXED FINITE-ELEMENT; NONSMOOTH FUNCTIONS; APPROXIMATION; SUPERCONVERGENCE; INTERPOLATION;
D O I
10.3934/math.2022291
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the spectral element approximation for the optimal control problem of parabolic equation, and present a hp spectral element approximation scheme for the parabolic optimal control problem. For improve the accuracy of the algorithm and construct an adaptive finite element approximation. Under the Scott-Zhang type quasi-interpolation operator, a L-2(H-1) - L-2(L-2) posteriori error estimates of the hp spectral element approximated solutions for both the state variables and the control variable are obtained. Adopting two auxiliary equations and stability results, a L-2(L-2)-L-2(L-2) posteriori error estimates are derived for the hp spectral element approximation of optimal parabolic control problem.
引用
收藏
页码:5220 / 5240
页数:21
相关论文
共 50 条
  • [1] A posteriori error estimates of spectral method for optimal control problems governed by parabolic equations
    YanPing Chen
    YunQing Huang
    NianYu Yi
    [J]. Science in China Series A: Mathematics, 2008, 51 : 1376 - 1390
  • [2] A posteriori error estimates of spectral method for optimal control problems governed by parabolic equations
    Chen YanPing
    Huang YunQing
    Yi NianYu
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS, 2008, 51 (08): : 1376 - 1390
  • [4] New a posteriori error estimates for hp version of finite element methods of nonlinear parabolic optimal control problems
    Zuliang Lu
    Hongyan Liu
    Chunjuan Hou
    Longzhou Cao
    [J]. Journal of Inequalities and Applications, 2016
  • [5] New a posteriori error estimates for hp version of finite element methods of nonlinear parabolic optimal control problems
    Lu, Zuliang
    Liu, Hongyan
    Hou, Chunjuan
    Cao, Longzhou
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016, : 1 - 17
  • [6] A posteriori error estimates of spectral method for nonlinear parabolic optimal control problem
    Li, Lin
    Lu, Zuliang
    Zhang, Wei
    Huang, Fei
    Yang, Yin
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [7] A posteriori error estimates of spectral method for nonlinear parabolic optimal control problem
    Lin Li
    Zuliang Lu
    Wei Zhang
    Fei Huang
    Yin Yang
    [J]. Journal of Inequalities and Applications, 2018
  • [8] A posteriori error estimates of hp spectral element methods for integral state constrained elliptic optimal control problems
    Chen, Yanping
    Zhang, Jinling
    Huang, Yunqing
    Xu, Yeqing
    [J]. APPLIED NUMERICAL MATHEMATICS, 2019, 144 : 42 - 58
  • [9] A posteriori error estimates for hp finite element solutions of convex optimal control problems
    Chen, Yanping
    Lin, Yijie
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (12) : 3435 - 3454
  • [10] A posteriori error estimates of finite element method for parabolic problems
    Chen, YP
    [J]. ACTA MATHEMATICA SCIENTIA, 1999, 19 (04) : 449 - 456