A posteriori error estimates of spectral method for nonlinear parabolic optimal control problem

被引:0
|
作者
Lin Li
Zuliang Lu
Wei Zhang
Fei Huang
Yin Yang
机构
[1] Chongqing Three Gorges University,Key Laboratory for Nonlinear Science and System Structure
[2] Chongqing Three Gorges University,Key Laboratory of Intelligent Information Processing and Control
[3] Tianjin University of Finance and Economics,Research Center for Mathematics and Economics
[4] Chongqing Three Gorges University,Key Laboratory of Intelligent Information Processing and Control of Chongqing Municipal Institutions of Higher Education
[5] Xiangtan University,Hunan Key Laboratory for Computation and Simulation in Science and Engineering
[6] Xiangtan University,Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education
关键词
Optimal control problem; Nonlinear parabolic equations; Variational discretization; Spectral method; A posteriori error estimates; 49J20; 65N30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate the spectral approximation of optimal control problem governed by nonlinear parabolic equations. A spectral approximation scheme for the nonlinear parabolic optimal control problem is presented. We construct a fully discrete spectral approximation scheme by using the backward Euler scheme in time. Moreover, by using an orthogonal projection operator, we obtain L2(H1)−L2(L2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{2}(H^{1})-L^{2}(L ^{2})$\end{document} a posteriori error estimates of the approximation solutions for both the state and the control. Finally, by introducing two auxiliary equations, we also obtain L2(L2)−L2(L2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{2}(L^{2})-L^{2}(L^{2})$\end{document} a posteriori error estimates of the approximation solutions for both the state and the control.
引用
收藏
相关论文
共 50 条
  • [1] A posteriori error estimates of spectral method for nonlinear parabolic optimal control problem
    Li, Lin
    Lu, Zuliang
    Zhang, Wei
    Huang, Fei
    Yang, Yin
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [2] A posteriori error estimates of spectral method for optimal control problems governed by parabolic equations
    YanPing Chen
    YunQing Huang
    NianYu Yi
    [J]. Science in China Series A: Mathematics, 2008, 51 : 1376 - 1390
  • [3] A posteriori error estimates of spectral method for optimal control problems governed by parabolic equations
    Chen YanPing
    Huang YunQing
    Yi NianYu
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS, 2008, 51 (08): : 1376 - 1390
  • [5] A posteriori error estimates of hp spectral element method for parabolic optimal control problems
    Lu, Zuliang
    Cai, Fei
    Xu, Ruixiang
    Hou, Chunjuan
    Wu, Xiankui
    Yang, Yin
    [J]. AIMS MATHEMATICS, 2022, 7 (04): : 5220 - 5240
  • [6] EQUIVALENT A POSTERIORI ERROR ESTIMATES FOR A CONSTRAINED OPTIMAL CONTROL PROBLEM GOVERNED BY PARABOLIC EQUATIONS
    Sun, Tongjun
    Ge, Liang
    Liu, Wenbin
    [J]. INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2013, 10 (01) : 1 - 23
  • [7] A Posteriori Error Estimates for Boundary Parabolic Optimal Control Problems
    Lu, Z.
    Liu, D.
    [J]. LOBACHEVSKII JOURNAL OF MATHEMATICS, 2014, 35 (02) : 92 - 105
  • [8] A POSTERIORI ERROR ESTIMATES OF THE DISCONTINUOUS GALERKIN METHOD FOR PARABOLIC PROBLEM
    Sebestova, Ivana
    Dolejsi, Vit
    [J]. PROGRAMS AND ALGORITHMS OF NUMERICAL MATHEMATICS 15, 2010, : 158 - 163
  • [9] A priori and a posteriori error estimates for the method of lumped masses for parabolic optimal control problems
    Fu, Hongfei
    Rui, Hongxing
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2011, 88 (13) : 2798 - 2823
  • [10] A posteriori error estimates for optimal control problems governed by parabolic equations
    Wenbin Liu
    Ningning Yan
    [J]. Numerische Mathematik, 2003, 93 : 497 - 521