Error estimates of finite volume method for Stokes optimal control problem

被引:2
|
作者
Lan, Lin [1 ]
Chen, Ri-hui [1 ]
Wang, Xiao-dong [1 ]
Ma, Chen-xia [1 ]
Fu, Hao-nan [1 ]
机构
[1] Kunming Univ Sci & Technol, Fac Land Resources Engn, Kunming 650093, Yunnan, Peoples R China
关键词
Optimal control problem; Stokes equations; Finite volume method; A priori error estimates; Variational discretization; 49J20; 65N30; UNIFIED ANALYSIS; ELEMENT METHODS; APPROXIMATION; OPTIMIZATION;
D O I
10.1186/s13660-020-02532-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we discuss a priori error estimates for the finite volume element approximation of optimal control problem governed by Stokes equations. Under some reasonable assumptions, we obtain optimal L2-norm error estimates. The approximate orders for the state, costate, and control variables are O(h2) in the sense of L2-norm. Furthermore, we derive H1-norm error estimates for the state and costate variables. Finally, we give some conclusions and future works.
引用
收藏
页数:13
相关论文
共 50 条