STEKLOV EIGENVALUE PROBLEMS WITH INDEFINITE WEIGHT FOR THE (p, q)-LAPLACIAN

被引:0
|
作者
Boukhsas, A. [1 ]
Zerouali, A. [2 ]
Chakrone, O. [3 ]
Karim, B. [1 ]
机构
[1] Moulay Ismail Univ Meknes, FST Errachidia, LMIMA Lab, Rolali Grp, Meknes, Morocco
[2] Reg Ctr Trades Educ & Training, Dept Math, Oujda, Morocco
[3] Mohammed First Univ Oujda, Fac Sci, Dept Math, Oujda, Morocco
来源
关键词
(p; q)-Laplacian; Steklov eigenvalue problem; indefinite weights; mountain pass theorem; global minimizer; POSITIVE SOLUTIONS; REGULARITY; EQUATION;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper provides existence and non-existence results on a positive solution for the problem Delta(r)u+ mu Delta(r')u = |u|(r-2) u+ mu|u|(r'- 2)u, with a nonlinear boundary condition given by <|del u|(r-2)del u+|del u|(r'-2)del u, nu > = lambda m(r)(x)|u|(r-2)u on the boundary of the domain, with mu > 0 and 1 < r not equal r' < infinity, where Omega is a bounded domain in R-N, nu is the outward unit normal vector on partial derivative Omega, <.,.> is the scalar product of R-N and m(r) is a weight function admitting sign-change. We show that existence and non-existence of a positive solution depend only on the relation between lambda and the first eigenvalue of r-Laplacian with weight function m(r), whence it is independent of the operator Delta(r') and the parameter mu > 0.
引用
收藏
页码:127 / 142
页数:16
相关论文
共 50 条
  • [11] On eigenvalue problems governed by the (p, q)-Laplacian
    Barbu, Luminita
    Morosanu, Gheorghe
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2023, 68 (01): : 63 - 76
  • [12] Nonlinear eigenvalue problems for the (p, q)-Laplacian
    Papageorgiou, Nikolaos S.
    Qin, Dongdong
    Radulescu, Vicentiu D.
    BULLETIN DES SCIENCES MATHEMATIQUES, 2021, 172
  • [13] ON THE EIGENVALUE SET OF THE (p, q)-LAPLACIAN WITH A NEUMANN-STEKLOV BOUNDARY CONDITION
    Barbu, Luminita
    Morosanu, Gheorghe
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2023, 36 (5-6) : 437 - 452
  • [14] Eigenvalue problems with indefinite weight
    Szulkin, A
    Willem, M
    STUDIA MATHEMATICA, 1999, 135 (02) : 191 - 201
  • [15] Eigenvalue problems and their perturbations for the weighted (p, q)-Laplacian
    Gasinski, Leszek
    Papageorgiou, Nikolaos S.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 101
  • [16] STEKLOV EIGENVALUES PROBLEMS FOR GENERALIZED (p, q)-LAPLACIAN TYPE OPERATORS
    Boukhsas, Abdelmajid
    Ouhamou, Brahim
    MEMOIRS ON DIFFERENTIAL EQUATIONS AND MATHEMATICAL PHYSICS, 2022, 85 : 35 - 51
  • [17] Perturbed eigenvalue problems for the Robin p-Laplacian plus an indefinite potential
    Vetro, Calogero
    ANALYSIS AND MATHEMATICAL PHYSICS, 2020, 10 (04)
  • [18] Perturbed eigenvalue problems for the Robin p-Laplacian plus an indefinite potential
    Calogero Vetro
    Analysis and Mathematical Physics, 2020, 10
  • [19] Indefinite Eigenvalue Problems for p-Laplacian Operators with Potential Terms on Networks
    Park, Jea-Hyun
    Chung, Soon-Yeong
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [20] NONLOCAL EIGENVALUE PROBLEMS WITH INDEFINITE WEIGHT
    Taarabti, Said
    METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2020, 26 (03): : 283 - 294