Perturbed eigenvalue problems for the Robin p-Laplacian plus an indefinite potential

被引:0
|
作者
Calogero Vetro
机构
[1] University of Palermo,Department of Mathematics and Computer Science
来源
关键词
Positive solutions; Sublinear and superlinear perturbation; Nonlinear Picone’s identity; Nonlinear maximum principle; Nonlinear regularity; Indefinite potential; Minimal positive solution; Uniqueness; Primary: 35J20; Secondary: 35J60;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a parametric nonlinear Robin problem driven by the negative p-Laplacian plus an indefinite potential. The equation can be thought as a perturbation of the usual eigenvalue problem. We consider the case where the perturbation f(z,·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(z,\cdot )$$\end{document} is (p-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(p-1)$$\end{document}-sublinear and then the case where it is (p-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(p-1)$$\end{document}-superlinear but without satisfying the Ambrosetti–Rabinowitz condition. We establish existence and uniqueness or multiplicity of positive solutions for certain admissible range for the parameter λ∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \in {\mathbb {R}}$$\end{document} which we specify exactly in terms of principal eigenvalue of the differential operator.
引用
收藏
相关论文
共 50 条
  • [1] Perturbed eigenvalue problems for the Robin p-Laplacian plus an indefinite potential
    Vetro, Calogero
    [J]. ANALYSIS AND MATHEMATICAL PHYSICS, 2020, 10 (04)
  • [2] RESONANT ROBIN PROBLEMS DRIVEN BY THE p-LAPLACIAN PLUS AN INDEFINITE POTENTIAL
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    Repovs, Dusan D.
    [J]. ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2018, 43 (01) : 483 - 508
  • [3] Concave-Convex Problems for the Robin p-Laplacian Plus an Indefinite Potential
    Papageorgiou, Nikolaos S.
    Scapellato, Andrea
    [J]. MATHEMATICS, 2020, 8 (03)
  • [4] Multiple solutions for resonant problems of the Robin p-Laplacian plus an indefinite potential
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    Repovs, Dusan D.
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2017, 56 (03)
  • [5] Multiple solutions for resonant problems of the Robin p-Laplacian plus an indefinite potential
    Nikolaos S. Papageorgiou
    Vicenţiu D. Rădulescu
    Dušan D. Repovš
    [J]. Calculus of Variations and Partial Differential Equations, 2017, 56
  • [6] EIGENVALUE PROBLEMS FOR THE P-LAPLACIAN WITH INDEFINITE WEIGHTS
    Cuesta, Mabel
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2001,
  • [7] Indefinite Eigenvalue Problems for p-Laplacian Operators with Potential Terms on Networks
    Park, Jea-Hyun
    Chung, Soon-Yeong
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [8] Superlinear Neumann problems with the p-Laplacian plus an indefinite potential
    Fragnelli, Genni
    Mugnai, Dimitri
    Papageorgiou, Nikolaos S.
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2017, 196 (02) : 479 - 517
  • [9] Superlinear Neumann problems with the p-Laplacian plus an indefinite potential
    Genni Fragnelli
    Dimitri Mugnai
    Nikolaos S. Papageorgiou
    [J]. Annali di Matematica Pura ed Applicata (1923 -), 2017, 196 : 479 - 517
  • [10] ASYMMETRIC ROBIN BOUNDARY-VALUE PROBLEMS WITH p-LAPLACIAN AND INDEFINITE POTENTIAL
    Marano, Salvatore A.
    Papageorgiou, Nikolaos S.
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2018,