Superlinear Neumann problems with the p-Laplacian plus an indefinite potential

被引:0
|
作者
Genni Fragnelli
Dimitri Mugnai
Nikolaos S. Papageorgiou
机构
[1] Università di Bari,Dipartimento di Matematica
[2] Università di Perugia,Dipartimento di Matematica e Informatica
[3] National Technical University,Department of Mathematics
关键词
-Laplacian; Superlinear reaction; Multiple solutions; Critical groups; Competing nonlinearities; Bifurcation theorem; Indefinite potential; Neumann problem; 35J20; 35J65; 58E05;
D O I
暂无
中图分类号
学科分类号
摘要
We consider nonlinear Neumann problems driven by the p-Laplacian plus an indefinite potential and with a superlinear reaction which need not satisfy the Ambrosetti–Rabinowitz condition. First, we prove an existence theorem, and then, under stronger conditions on the reaction, we prove a multiplicity theorem producing three nontrivial solutions. Then, we examine parametric problems with competing nonlinearities (concave and convex terms). We show that for all small values of the parameter λ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda >0$$\end{document}, the problem has five nontrivial solutions and if p=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=2$$\end{document} (semilinear equation), there are six nontrivial solutions. Finally, we prove a bifurcation result describing the set of positive solutions as the parameter λ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda >0$$\end{document} varies.
引用
收藏
页码:479 / 517
页数:38
相关论文
共 50 条
  • [1] Superlinear Neumann problems with the p-Laplacian plus an indefinite potential
    Fragnelli, Genni
    Mugnai, Dimitri
    Papageorgiou, Nikolaos S.
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2017, 196 (02) : 479 - 517
  • [2] Resonant equations with the Neumann p-Laplacian plus an indefinite potential
    Gasinski, Leszek
    Papageorgiou, Nikolaos S.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 422 (02) : 1146 - 1179
  • [3] MULTIPLE SOLUTIONS FOR SUPERLINEAR p-LAPLACIAN NEUMANN PROBLEMS
    Aizicovici, Sergiu
    Papageorgiou, Nikolaos S.
    Staicu, Vasile
    [J]. OSAKA JOURNAL OF MATHEMATICS, 2012, 49 (03) : 699 - 740
  • [4] Perturbed eigenvalue problems for the Robin p-Laplacian plus an indefinite potential
    Vetro, Calogero
    [J]. ANALYSIS AND MATHEMATICAL PHYSICS, 2020, 10 (04)
  • [5] Perturbed eigenvalue problems for the Robin p-Laplacian plus an indefinite potential
    Calogero Vetro
    [J]. Analysis and Mathematical Physics, 2020, 10
  • [6] RESONANT ROBIN PROBLEMS DRIVEN BY THE p-LAPLACIAN PLUS AN INDEFINITE POTENTIAL
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    Repovs, Dusan D.
    [J]. ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2018, 43 (01) : 483 - 508
  • [7] Concave-Convex Problems for the Robin p-Laplacian Plus an Indefinite Potential
    Papageorgiou, Nikolaos S.
    Scapellato, Andrea
    [J]. MATHEMATICS, 2020, 8 (03)
  • [8] Multiple solutions for resonant problems of the Robin p-Laplacian plus an indefinite potential
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    Repovs, Dusan D.
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2017, 56 (03)
  • [9] ON A p-SUPERLINEAR NEUMANN p-LAPLACIAN EQUATION
    Aizicovici, Sergiu
    Papageorgiou, Nikolaos S.
    Staicu, Vasile
    [J]. TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2009, 34 (01) : 111 - 130
  • [10] Multiple solutions for resonant problems of the Robin p-Laplacian plus an indefinite potential
    Nikolaos S. Papageorgiou
    Vicenţiu D. Rădulescu
    Dušan D. Repovš
    [J]. Calculus of Variations and Partial Differential Equations, 2017, 56