Perturbed eigenvalue problems for the Robin p-Laplacian plus an indefinite potential

被引:0
|
作者
Calogero Vetro
机构
[1] University of Palermo,Department of Mathematics and Computer Science
来源
关键词
Positive solutions; Sublinear and superlinear perturbation; Nonlinear Picone’s identity; Nonlinear maximum principle; Nonlinear regularity; Indefinite potential; Minimal positive solution; Uniqueness; Primary: 35J20; Secondary: 35J60;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a parametric nonlinear Robin problem driven by the negative p-Laplacian plus an indefinite potential. The equation can be thought as a perturbation of the usual eigenvalue problem. We consider the case where the perturbation f(z,·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(z,\cdot )$$\end{document} is (p-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(p-1)$$\end{document}-sublinear and then the case where it is (p-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(p-1)$$\end{document}-superlinear but without satisfying the Ambrosetti–Rabinowitz condition. We establish existence and uniqueness or multiplicity of positive solutions for certain admissible range for the parameter λ∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \in {\mathbb {R}}$$\end{document} which we specify exactly in terms of principal eigenvalue of the differential operator.
引用
收藏
相关论文
共 50 条
  • [21] Limits as p → ∞ of p-laplacian eigenvalue problems perturbed with a concave or convex term
    Fernando Charro
    Enea Parini
    [J]. Calculus of Variations and Partial Differential Equations, 2013, 46 : 403 - 425
  • [22] An optimization problem for the first eigenvalue of the p-Laplacian plus a potential
    Fernandez Bonder, Julian
    Del Pezzo, Leandro M.
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2006, 5 (04) : 675 - 690
  • [23] Indefinite Perturbations of the Eigenvalue Problem for the Nonautonomous p-Laplacian
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    Sun, Xueying
    [J]. MILAN JOURNAL OF MATHEMATICS, 2023, 91 (02) : 353 - 373
  • [24] Indefinite Perturbations of the Eigenvalue Problem for the Nonautonomous p-Laplacian
    Nikolaos S. Papageorgiou
    Vicenţiu D. Rădulescu
    Xueying Sun
    [J]. Milan Journal of Mathematics, 2023, 91 : 353 - 373
  • [25] The limit as p → plus ∞ of the first eigenvalue for the p-Laplacian with mixed Dirichlet and Robin boundary conditions
    Rossi, Julio D.
    Saintier, Nicolas
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 119 : 167 - 178
  • [26] First Robin eigenvalue of the p-Laplacian on Riemannian manifolds
    Xiaolong Li
    Kui Wang
    [J]. Mathematische Zeitschrift, 2021, 298 : 1033 - 1047
  • [27] First Robin eigenvalue of the p-Laplacian on Riemannian manifolds
    Li, Xiaolong
    Wang, Kui
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2021, 298 (3-4) : 1033 - 1047
  • [28] THE DUAL EIGENVALUE PROBLEMS FOR p-LAPLACIAN
    Cheng, Y. -H.
    Lian, W. -C.
    Wang, W. -C.
    [J]. ACTA MATHEMATICA HUNGARICA, 2014, 142 (01) : 132 - 151
  • [29] The dual eigenvalue problems for p-Laplacian
    Yan-Hsiou Cheng
    Wei-Cheng Lian
    Wei-Chuan Wang
    [J]. Acta Mathematica Hungarica, 2014, 142 : 132 - 151
  • [30] LINKED EIGENVALUE PROBLEMS FOR THE P-LAPLACIAN
    BINDING, PA
    HUANG, YX
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1994, 124 : 1023 - 1036