First Robin eigenvalue of the p-Laplacian on Riemannian manifolds

被引:0
|
作者
Xiaolong Li
Kui Wang
机构
[1] University of California,Department of Mathematics
[2] Irvine,School of Mathematical Sciences
[3] Soochow University,undefined
来源
Mathematische Zeitschrift | 2021年 / 298卷
关键词
Robin eigenvalue; -Laplacian; Eigenvalue comparison; Barta’s inequality; 35P15; 35P30; 58C40; 58J50;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the first Robin eigenvalue λp(M,α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _p(M,\alpha )$$\end{document} for the p-Laplacian on a compact Riemannian manifold M with nonempty smooth boundary, with α∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in \mathbb {R}$$\end{document} being the Robin parameter. Firstly, we prove eigenvalue comparison theorems of Cheng type for λp(M,α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _p(M,\alpha )$$\end{document}. Secondly, when α>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha >0$$\end{document} we establish sharp lower bound of λp(M,α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _p(M,\alpha )$$\end{document} in terms of dimension, inradius, Ricci curvature lower bound and boundary mean curvature lower bound, via comparison with an associated one-dimensional eigenvalue problem. The lower bound becomes an upper bound when α<0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha <0$$\end{document}. Our results cover corresponding comparison theorems for the first Dirichlet eigenvalue of the p-Laplacian when letting α→+∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \rightarrow +\infty $$\end{document}.
引用
收藏
页码:1033 / 1047
页数:14
相关论文
共 50 条