STEKLOV EIGENVALUE PROBLEMS WITH INDEFINITE WEIGHT FOR THE (p, q)-LAPLACIAN

被引:0
|
作者
Boukhsas, A. [1 ]
Zerouali, A. [2 ]
Chakrone, O. [3 ]
Karim, B. [1 ]
机构
[1] Moulay Ismail Univ Meknes, FST Errachidia, LMIMA Lab, Rolali Grp, Meknes, Morocco
[2] Reg Ctr Trades Educ & Training, Dept Math, Oujda, Morocco
[3] Mohammed First Univ Oujda, Fac Sci, Dept Math, Oujda, Morocco
来源
关键词
(p; q)-Laplacian; Steklov eigenvalue problem; indefinite weights; mountain pass theorem; global minimizer; POSITIVE SOLUTIONS; REGULARITY; EQUATION;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper provides existence and non-existence results on a positive solution for the problem Delta(r)u+ mu Delta(r')u = |u|(r-2) u+ mu|u|(r'- 2)u, with a nonlinear boundary condition given by <|del u|(r-2)del u+|del u|(r'-2)del u, nu > = lambda m(r)(x)|u|(r-2)u on the boundary of the domain, with mu > 0 and 1 < r not equal r' < infinity, where Omega is a bounded domain in R-N, nu is the outward unit normal vector on partial derivative Omega, <.,.> is the scalar product of R-N and m(r) is a weight function admitting sign-change. We show that existence and non-existence of a positive solution depend only on the relation between lambda and the first eigenvalue of r-Laplacian with weight function m(r), whence it is independent of the operator Delta(r') and the parameter mu > 0.
引用
收藏
页码:127 / 142
页数:16
相关论文
共 50 条
  • [21] Multiple solutions for eigenvalue problems involving the (p, q)-Laplacian
    Pucci, Patrizia
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2023, 68 (01): : 93 - 108
  • [22] THE ASYMPTOTIC BEHAVIOUR OF THE p(x)-LAPLACIAN STEKLOV EIGENVALUE PROBLEM
    Yu, Lujuan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2020, 25 (07): : 2621 - 2637
  • [23] p(x)-LAPLACIAN WITH INDEFINITE WEIGHT
    Kefi, Khaled
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (12) : 4351 - 4360
  • [24] STEKLOV PROBLEMS INVOLVING THE p(x)-LAPLACIAN
    Afrouzi, Ghasem A.
    Hadjian, Armin
    Heidarkhani, Shapour
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2014,
  • [25] Optimization of Robin Laplacian Eigenvalue With Indefinite Weight in Spherical Shell
    Schneider, Baruch
    Schneiderova, Diana
    Zhang, Yifan
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (06) : 6586 - 6591
  • [26] Multiple solutions for a (p, q)-Laplacian Steklov problem
    Boukhsas, A.
    Zerouali, A.
    Chakrone, O.
    Karim, B.
    ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2020, 47 (02): : 357 - 368
  • [27] ON THE FIRST EIGENVALUE OF THE STEKLOV EIGENVALUE PROBLEM FOR THE INFINITY LAPLACIAN
    Le, An
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2006,
  • [28] Initial value problems of p-Laplacian with a strong singular indefinite weight
    Li, Hong-Xu
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2010, 77 (3-4): : 415 - 425
  • [29] Existence of solutions for p(x)-Laplacian nonhomogeneous Neumann problems with indefinite weight
    Qian, Chenyin
    Shen, Zifei
    Yang, Minbo
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (01) : 446 - 458
  • [30] Indefinite Perturbations of the Eigenvalue Problem for the Nonautonomous p-Laplacian
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    Sun, Xueying
    MILAN JOURNAL OF MATHEMATICS, 2023, 91 (02) : 353 - 373