STEKLOV EIGENVALUE PROBLEMS WITH INDEFINITE WEIGHT FOR THE (p, q)-LAPLACIAN

被引:0
|
作者
Boukhsas, A. [1 ]
Zerouali, A. [2 ]
Chakrone, O. [3 ]
Karim, B. [1 ]
机构
[1] Moulay Ismail Univ Meknes, FST Errachidia, LMIMA Lab, Rolali Grp, Meknes, Morocco
[2] Reg Ctr Trades Educ & Training, Dept Math, Oujda, Morocco
[3] Mohammed First Univ Oujda, Fac Sci, Dept Math, Oujda, Morocco
来源
关键词
(p; q)-Laplacian; Steklov eigenvalue problem; indefinite weights; mountain pass theorem; global minimizer; POSITIVE SOLUTIONS; REGULARITY; EQUATION;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper provides existence and non-existence results on a positive solution for the problem Delta(r)u+ mu Delta(r')u = |u|(r-2) u+ mu|u|(r'- 2)u, with a nonlinear boundary condition given by <|del u|(r-2)del u+|del u|(r'-2)del u, nu > = lambda m(r)(x)|u|(r-2)u on the boundary of the domain, with mu > 0 and 1 < r not equal r' < infinity, where Omega is a bounded domain in R-N, nu is the outward unit normal vector on partial derivative Omega, <.,.> is the scalar product of R-N and m(r) is a weight function admitting sign-change. We show that existence and non-existence of a positive solution depend only on the relation between lambda and the first eigenvalue of r-Laplacian with weight function m(r), whence it is independent of the operator Delta(r') and the parameter mu > 0.
引用
收藏
页码:127 / 142
页数:16
相关论文
共 50 条
  • [31] Indefinite Perturbations of the Eigenvalue Problem for the Nonautonomous p-Laplacian
    Nikolaos S. Papageorgiou
    Vicenţiu D. Rădulescu
    Xueying Sun
    Milan Journal of Mathematics, 2023, 91 : 353 - 373
  • [32] On eigenvalue problems for the p(x)-Laplacian
    Marcos, Aboubacar
    Soninhekpon, Janvier
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 535 (02)
  • [33] Eigenvalue problems for the p-Laplacian
    Lê, A
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (05) : 1057 - 1099
  • [34] MULTIPLICITY RESULTS FOR p-SUBLINEAR p-LAPLACIAN PROBLEMS INVOLVING INDEFINITE EIGENVALUE PROBLEMS VIA MORSE THEORY
    Perera, Kanishka
    Agarwal, Ravi P.
    O'Regan, Donal
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2010,
  • [35] LINEAR ELLIPTIC EIGENVALUE PROBLEMS INVOLVING AN INDEFINITE WEIGHT
    FAIERMAN, M
    ROACH, GF
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1987, 126 (02) : 516 - 528
  • [36] Fractional eigenvalue problems that approximate Steklov eigenvalue problems
    Del Pezzo, Leandro M.
    Rossi, Julio D.
    Salort, Ariel M.
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2018, 148 (03) : 499 - 516
  • [37] One-dimensional p-Laplacian with a strong singular indefinite weight, I.: Eigenvalue
    Kajikiya, Ryuji
    Lee, Yong-Hoon
    Sim, Inbo
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 244 (08) : 1985 - 2019
  • [38] Existence Results to Steklov System Involving the (p, q)-Laplacian
    Oubalhaj, Youness
    Karim, Belhadj
    Zerouali, Abdellah
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2023, 41
  • [39] EXISTENCE OF SOLUTIONS TO INDEFINITE QUASILINEAR ELLIPTIC PROBLEMS OF P-Q-LAPLACIAN TYPE
    Sidiropoulos, Nikolaos E.
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2010,
  • [40] On an eigenvalue problem associated with the (p, q) - Laplacian
    Barbu, Luminita
    Burlacu, Andreea
    Morosanu, Gheorghe
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2024, 32 (01): : 45 - 64