Nonlinear eigenvalue problems for the (p, q)-Laplacian

被引:18
|
作者
Papageorgiou, Nikolaos S. [1 ]
Qin, Dongdong [2 ]
Radulescu, Vicentiu D. [3 ,4 ]
机构
[1] Natl Tech Univ Athens, Dept Math, Zografou Campus, Athens 15780, Greece
[2] Cent South Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
[3] AGH Univ Sci & Technol, Fac Appl Math, Al Mickiewicza 30, PL-30059 Krakow, Poland
[4] Univ Craiova, Dept Math, Craiova 200585, Romania
来源
基金
中国国家自然科学基金;
关键词
(p; q)-Laplacian; Constant sign and nodal solutions; Critical groups; Unique continuation; Nonlinear regularity; INDEFINITE; EXISTENCE; INFINITY; PLUS;
D O I
10.1016/j.bulsci.2021.103039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a parametric (p, q)-equations with sign-changing reaction and Robin boundary condition. We show that for all values of the parameter.bigger than a certain value which we determine precisely, the problem has at least three nontrivial solutions all with sign information and ordered. For the particular case of (p, 2)-equations we produce a second nodal solution, for a total of four nontrivial solutions. Under symmetry conditions, we show the existence of infinitely many nodal solutions. The same results are also valid for the Dirichlet problem. (c) 2021 The Author(s). Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:29
相关论文
共 50 条
  • [1] On eigenvalue problems governed by the (p, q)-Laplacian
    Barbu, Luminita
    Morosanu, Gheorghe
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2023, 68 (01): : 63 - 76
  • [2] Eigenvalue problems and their perturbations for the weighted (p, q)-Laplacian
    Gasinski, Leszek
    Papageorgiou, Nikolaos S.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 101
  • [3] Nonlinear Eigenvalue Problems for the Dirichlet (p,2)-Laplacian
    Bai, Yunru
    Gasinski, Leszek
    Papageorgiou, Nikolaos S.
    AXIOMS, 2022, 11 (02)
  • [4] STEKLOV EIGENVALUE PROBLEMS WITH INDEFINITE WEIGHT FOR THE (p, q)-LAPLACIAN
    Boukhsas, A.
    Zerouali, A.
    Chakrone, O.
    Karim, B.
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2022, 67 (3-4): : 127 - 142
  • [5] Generalized eigenvalue problems for (p, q)-Laplacian with indefinite weight
    Tanaka, Mieko
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 419 (02) : 1181 - 1192
  • [6] Multiple solutions for eigenvalue problems involving the (p, q)-Laplacian
    Pucci, Patrizia
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2023, 68 (01): : 93 - 108
  • [7] Multiple positive solutions for nonlinear eigenvalue problems with the p-Laplacian
    Hu, Shouchuan
    Papageorgiou, Nikolas S.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (12) : 4286 - 4300
  • [8] On eigenvalue problems for the p(x)-Laplacian
    Marcos, Aboubacar
    Soninhekpon, Janvier
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 535 (02)
  • [9] Eigenvalue problems for the p-Laplacian
    Lê, A
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (05) : 1057 - 1099
  • [10] On an eigenvalue problem associated with the (p, q) - Laplacian
    Barbu, Luminita
    Burlacu, Andreea
    Morosanu, Gheorghe
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2024, 32 (01): : 45 - 64