Generalized eigenvalue problems for (p, q)-Laplacian with indefinite weight

被引:50
|
作者
Tanaka, Mieko [1 ]
机构
[1] Tokyo Univ Sci, Dept Math, Shinjyuku Ku, Tokyo 1628601, Japan
关键词
Indefinite weight; Nonlinear eigenvalue problems (p; q)-Laplacian; Mountain pass theorem; Global minimizer; EXISTENCE; LAPLACIAN;
D O I
10.1016/j.jmaa.2014.05.044
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents existence and non-existence results on a positive solution for quasilinear elliptic equations of the form u u = Amr (x) jur2u in Q with 1 < r r* < oo and i > 0, under Dirichlet boundary condition, where is a bounded domain in IP' and mr is a weight function in L' (0) admitting sign-change. We show that existence and non-existence of a positive solution depend only on the relation between A and the first eigenvalue of r-Laplacian with weight function mr, whence it is independent of the operator A, and the parameter A> 0. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:1181 / 1192
页数:12
相关论文
共 50 条
  • [1] STEKLOV EIGENVALUE PROBLEMS WITH INDEFINITE WEIGHT FOR THE (p, q)-LAPLACIAN
    Boukhsas, A.
    Zerouali, A.
    Chakrone, O.
    Karim, B.
    [J]. REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2022, 67 (3-4): : 127 - 142
  • [2] Eigenvalue Problems for Fractional p(x, y)-Laplacian Equations with Indefinite Weight
    Nguyen Thanh Chung
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2019, 23 (05): : 1153 - 1173
  • [3] EIGENVALUE PROBLEMS FOR THE P-LAPLACIAN WITH INDEFINITE WEIGHTS
    Cuesta, Mabel
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2001,
  • [4] On eigenvalue problems governed by the (p, q)-Laplacian
    Barbu, Luminita
    Morosanu, Gheorghe
    [J]. STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2023, 68 (01): : 63 - 76
  • [5] Nonlinear eigenvalue problems for the (p, q)-Laplacian
    Papageorgiou, Nikolaos S.
    Qin, Dongdong
    Radulescu, Vicentiu D.
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2021, 172
  • [6] Eigenvalue problems with indefinite weight
    Szulkin, A
    Willem, M
    [J]. STUDIA MATHEMATICA, 1999, 135 (02) : 191 - 201
  • [7] Eigenvalue problems of fractional q-difference equations with generalized p-Laplacian
    Li, Xinhui
    Han, Zhenlai
    Sun, Shurong
    Sun, Liying
    [J]. APPLIED MATHEMATICS LETTERS, 2016, 57 : 46 - 53
  • [8] Eigenvalue problems and their perturbations for the weighted (p, q)-Laplacian
    Gasinski, Leszek
    Papageorgiou, Nikolaos S.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 101
  • [9] Perturbed eigenvalue problems for the Robin p-Laplacian plus an indefinite potential
    Vetro, Calogero
    [J]. ANALYSIS AND MATHEMATICAL PHYSICS, 2020, 10 (04)
  • [10] Indefinite Eigenvalue Problems for p-Laplacian Operators with Potential Terms on Networks
    Park, Jea-Hyun
    Chung, Soon-Yeong
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2014,