STEKLOV EIGENVALUES PROBLEMS FOR GENERALIZED (p, q)-LAPLACIAN TYPE OPERATORS

被引:0
|
作者
Boukhsas, Abdelmajid [1 ]
Ouhamou, Brahim [2 ]
机构
[1] Univ Moulay Ismail Meknes, FST Errachidia, LMIMA Lab, ROLALI Grp, Meknes, Morocco
[2] Univ Mohammed First Oujda, Oujda, Morocco
关键词
(p; q)-Laplacian; nonlinear boundary conditions; Steklov eigenvalue problem; mountain pass theorem; Ekeland variational; Q ELLIPTIC PROBLEMS; POSITIVE SOLUTIONS; EXISTENCE; MULTIPLICITY; EQUATION;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the following class of (p, q) elliptic problems under Steklov-type boundary conditions {-div (a(vertical bar del u vertical bar(p))vertical bar del u vertical bar(p-2)del u) + a(vertical bar u vertical bar(p))vertical bar u vertical bar(p-2)u = 0 in Omega, a(vertical bar del u vertical bar(p))vertical bar del u vertical bar(p-2) del u.v = lambda vertical bar u vertical bar(m-2)u on partial derivative Omega, where Omega is a smooth bounded domain in R-N (N >= 2), nu is the outward unit normal vector on partial derivative Omega, 2 <= p < N, m is an element of R with m > 1 in suitable ranges listed later and a is a C-1 real function and lambda > 0 is a real parameter. Using variational methods, we establish the existence of a continuous and unbounded set of positive generalized eigenvalues.
引用
收藏
页码:35 / 51
页数:17
相关论文
共 50 条
  • [1] Some classes of eigenvalues problems for generalized p&q-Laplacian type operators on bounded domains
    Barile, Sara
    Figueiredo, Giovany M.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 119 : 457 - 468
  • [2] STEKLOV EIGENVALUE PROBLEMS WITH INDEFINITE WEIGHT FOR THE (p, q)-LAPLACIAN
    Boukhsas, A.
    Zerouali, A.
    Chakrone, O.
    Karim, B.
    [J]. REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2022, 67 (3-4): : 127 - 142
  • [3] Eigenvalues of the p(x)-Laplacian Steklov problem
    Deng, Shao-Gao
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 339 (02) : 925 - 937
  • [4] Steklov eigenvalues for the ∞-Laplacian
    Garcia-Azorero, Jesus
    Manfredi, Juan J.
    Peral, Ireneo
    Rossi, Julio D.
    [J]. RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2006, 17 (03) : 199 - 210
  • [5] Eigenvalues of the negative (p,q)-Laplacian under a Steklov-like boundary condition
    Barbu, Luminita
    Morosanu, Gheorghe
    [J]. COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2019, 64 (04) : 685 - 700
  • [6] Upper bounds for the Steklov eigenvalues of the p-Laplacian
    Provenzano, Luigi
    [J]. MATHEMATIKA, 2022, 68 (01) : 148 - 162
  • [7] COMPARISON OF STEKLOV EIGENVALUES AND LAPLACIAN EIGENVALUES ON GRAPHS
    Shi, Yongjie
    Yu, Chengjie
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (04) : 1505 - 1517
  • [8] Existence results for double phase problems depending on Robin and Steklov eigenvalues for the p-Laplacian
    El Manouni, Said
    Marino, Greta
    Winkert, Patrick
    [J]. ADVANCES IN NONLINEAR ANALYSIS, 2022, 11 (01) : 304 - 320
  • [9] STEKLOV PROBLEMS INVOLVING THE p(x)-LAPLACIAN
    Afrouzi, Ghasem A.
    Hadjian, Armin
    Heidarkhani, Shapour
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2014,
  • [10] Multiple solutions for a (p, q)-Laplacian Steklov problem
    Boukhsas, A.
    Zerouali, A.
    Chakrone, O.
    Karim, B.
    [J]. ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2020, 47 (02): : 357 - 368