Some classes of eigenvalues problems for generalized p&q-Laplacian type operators on bounded domains

被引:9
|
作者
Barile, Sara [1 ]
Figueiredo, Giovany M. [2 ]
机构
[1] Univ Bari Aldo Moro, Dipartimento Matemat, I-70125 Bari, Italy
[2] Fed Univ Para, Fac Matemat, BR-66075110 Belem, PA, Brazil
关键词
p&q-Laplacian; Nonlinear eigenvalues problems; Variational methods; Mountain Pass Theorem; Local and global minimizers; Q ELLIPTIC PROBLEMS; EXISTENCE; MULTIPLICITY; (P;
D O I
10.1016/j.na.2014.11.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to present a preliminary study on a more general class of p&q type eigenvalues problems given by {-div(a(vertical bar del u vertical bar(p))vertical bar del u vertical bar(p-2)del u) = lambda vertical bar u vertical bar(m-2)u, in Omega, u = 0 on partial derivative Omega, where Omega is a smooth bounded domain in R-N, N >= 3, 2 <= p < N, m is an element of R with m > 1 in suitable ranges listed later, a is a C-1 real function and lambda > 0 is a real parameter. Wemake use of variational approaches like a Generalized version of Weierstrass Theorem and/or the Ekeland variational principle and the Mountain Pass Theorem due to Ambrosetti-Rabinowitz. In particular the existence of a continuous and unbounded set of positive generalized eigenvalues is established. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:457 / 468
页数:12
相关论文
共 50 条
  • [1] STEKLOV EIGENVALUES PROBLEMS FOR GENERALIZED (p, q)-LAPLACIAN TYPE OPERATORS
    Boukhsas, Abdelmajid
    Ouhamou, Brahim
    [J]. MEMOIRS ON DIFFERENTIAL EQUATIONS AND MATHEMATICAL PHYSICS, 2022, 85 : 35 - 51
  • [2] (p, q)- LAPLACIAN PROBLEMS WITH PARAMETERS IN BOUNDED AND UNBOUNDED DOMAINS
    El Manouni, Said
    Perera, Kanishka
    Winkert, Patrick
    [J]. HOUSTON JOURNAL OF MATHEMATICS, 2023, 49 (04): : 921 - 937
  • [3] On the stationary solutions of generalized reaction diffusion equations with p&q-Laplacian
    Cherfils, L
    Il'Yasov, Y
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2005, 4 (01) : 9 - 22
  • [4] FRACTIONAL p&q-LAPLACIAN PROBLEMS WITH POTENTIALS VANISHING AT INFINITY
    Isernia, Teresa
    [J]. OPUSCULA MATHEMATICA, 2020, 40 (01) : 93 - 110
  • [5] Infinitely Many Solutions for the Fractional p&q-Laplacian Problems in RN
    Wang, Liyan
    Chi, Kun
    Shen, Jihong
    Ge, Bin
    [J]. SYMMETRY-BASEL, 2022, 14 (12):
  • [6] A critical Kirchhoff-type problem involving the p&q-Laplacian
    Cammaroto, F.
    Vilasi, L.
    [J]. MATHEMATISCHE NACHRICHTEN, 2014, 287 (2-3) : 184 - 193
  • [7] POSITIVE SOLUTIONS FOR SOME GENERALIZED p-LAPLACIAN TYPE PROBLEMS
    Candela, Anna Maria
    Salvatore, Addolorata
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2020, 13 (07): : 1935 - 1945
  • [8] On the existence of solutions to a fractional (p, q)-Laplacian system on bounded domains
    Souissi, Chouhaid
    [J]. JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2022, 8 (01) : 231 - 253
  • [9] On the existence of solutions to a fractional (p, q)-Laplacian system on bounded domains
    Chouhaïd Souissi
    [J]. Journal of Elliptic and Parabolic Equations, 2022, 8 : 231 - 253
  • [10] Generalized eigenvalue problems for (p, q)-Laplacian with indefinite weight
    Tanaka, Mieko
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 419 (02) : 1181 - 1192