Applying Particle Swarm Optimization to Parameter Estimation of the Nonlinear Muskingum Model

被引:102
|
作者
Chu, Hone-Jay [1 ]
Chang, Liang-Cheng [1 ]
机构
[1] Natl Chiao Tung Univ, Dept Civil Engn, Hsinchu 30050, Taiwan
关键词
Estimation; Flood routing; Hydrologic models; Optimization; Parameters; Particles;
D O I
10.1061/(ASCE)HE.1943-5584.0000070
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The Muskingum model is the most widely used method for flood routing in hydrologic engineering. However, the application of the model still suffers from a lack of an efficient method for parameter estimation. Particle swarm optimization (PSO) is applied to the parameter estimation for the nonlinear Muskingum model. PSO does not need any initial guess of each parameter and thus avoids the subjective estimation usually found in traditional estimation methods and reduces the likelihood of finding a local optimum of the parameter values. Simulation results indicate that the proposed scheme can improve the accuracy of the Muskingum model for flood routing. A case study is presented to demonstrate that the proposed scheme is an alternative way to estimate the parameters of the Muskingum model.
引用
收藏
页码:1024 / 1027
页数:4
相关论文
共 50 条
  • [31] PARAMETER ESTIMATION OF SCHOTTKY-BARRIER DIODE MODEL BY PARTICLE SWARM OPTIMIZATION
    Wang, Kaier
    Ye, Meiying
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2009, 20 (05): : 687 - 699
  • [32] Cosmological parameter estimation using particle swarm optimization
    Prasad, Jayanti
    Souradeep, Tarun
    PHYSICAL REVIEW D, 2012, 85 (12):
  • [33] Parameter estimation for chaotic systems by particle swarm optimization
    He, Qie
    Wang, Ling
    Liu, Bo
    CHAOS SOLITONS & FRACTALS, 2007, 34 (02) : 654 - 661
  • [34] Parameter Estimation of Water Quality Model Using Particle Swarm Optimization Technique
    Wang, Ke
    Wang, Xiaodong
    Shen, Li
    CCDC 2009: 21ST CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, PROCEEDINGS, 2009, : 1209 - 1214
  • [35] A Class of Parameter Estimation Methods for Nonlinear Muskingum Model Using Hybrid Invasive Weed Optimization Algorithm
    Ouyang, Aijia
    Liu, Li-Bin
    Sheng, Zhou
    Wu, Fan
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2015, 2015
  • [36] Parameter estimation of variable-parameter nonlinear Muskingum model using excel solver
    Kang, Ling
    Zhou, Liwei
    INTERNATIONAL CONFERENCE ON ENERGY ENGINEERING AND ENVIRONMENTAL PROTECTION (EEEP2017), 2018, 121
  • [37] Parameter estimation of multivariable Wiener nonlinear systems by the improved particle swarm optimization and coupling identification
    Zong, Tiancheng
    Li, Junhong
    Lu, Guoping
    INFORMATION SCIENCES, 2024, 661
  • [38] PARAMETER-ESTIMATION OF LINEAR AND NONLINEAR MUSKINGUM MODELS
    YOON, JW
    PADMANABHAN, G
    JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT-ASCE, 1993, 119 (05): : 600 - 610
  • [39] Parameter estimation of the Bouc-Wen hysteresis model using particle swarm optimization
    Ye, Meiying
    Wang, Xiaodong
    SMART MATERIALS AND STRUCTURES, 2007, 16 (06) : 2341 - 2349
  • [40] MEDICAL MODEL ESTIMATION WITH PARTICLE SWARM OPTIMIZATION
    Sari, Murat
    Ahmad, Arshed A.
    Uslu, Hande
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2021, 70 (01): : 468 - 482